S Powersoft

Open Tools from Sybase, Inc.

PowerBuilder
SQL Anywhere

User's Guide
Volume 2: Reference

Version 6

Power
Bullder

AA0818
October 1997

Copyright © 1991-1997 Sybase, Inc. and its subsidiaries.
All rights reserved.
Printed in Ireland.

Information in this manual may change without notice and does not represent
a commitment on the part of Sybase, Inc. and its subsidiaries.

The software described in this manual is provided by Powersoft Corporation
under a Powersoft License agreement. The software may be used only in
accordance with the terms of the agreement.

No part of this publication may be reproduced, transmitted, or translated in
any form or by any means, electronic, mechanical, manual, optical, or
otherwise, without the prior written permission of Sybase, Inc. and its
subsidiaries.

Sybase, Inc. and its subsidiaries claim copyright in this program and
documentation as an unpublished work, revisions of which were first
licensed on the date indicated in the foregoing notice. Claim of copyright
does not imply waiver of other rights of Sybase, Inc. and its subsidiaries.

ClearConnect, Column Design, ComponentPack, InfoMaker, ObjectCycle,
PowerBuilder, PowerDesigner, Powersoft, S-Designor, SQL SMART, and
Sybase are registered trademarks of Sybase, Inc. and its subsidiaries.
Adaptive Component Architecture, Adaptive Server Anywhere, Adaptive
Server Enterprise, Adaptive Warehouse, AppModeler, DataArchitect,
DataExpress, Data Pipeline, DataWindow, dbQueue, ImpactNow, InstaHelp,
Jaguar CTS, jConnect for JDBC, MetaWorks, Netlmpact, Optima++,
Power++, PowerAMC, PowerBuilder Foundation Class Library, Power J,
PowerScript, PowerSite, Powersoft Portfolio, Powersoft Professional,
PowerTips, ProcessAnalyst, Runtime Kit for Unicode, SQL Anywhere, The
Model For Client/Server Solutions, The Future Is Wide Open, Translation
Toolkit, UNIBOM, Unilib, Uninull, Unisep, Unistring, Viewer,
WarehouseArchitect, Watcom, Watcom SQL Server, Web.PB, and Web.SQL
are trademarks of Sybase, Inc. or its subsidiaries. Certified PowerBuilder
Developer and CPD are service marks of Sybase, Inc. or its subsidiaries.
DataWindow is a patented proprietary technology of Sybase, Inc. or its
subsidiaries.

AccuFonts is a trademark of AccuWare Business Solutions Ltd.

All other trademarks are the property of their respective owners.

SQL Anywhere for PowerBuilder

This SOL Anywhere User’s Guide describes all the features of the SQL
Anywhere product. The version of SQL Anywhere that is included in
PowerBuilder does not have all the features of the full SQL Anywhere
product. The following features, documented in the SQL Anywhere
User’s Guide are not available to PowerBuilder users:

*

Embedded SQL, HLI, Open Client, and DDE interfaces
PowerBuilder users access SQL Anywhere through ODBC. The
chapters on the SQL Anywhere programming interfaces can be
ignored, and the Open Server Gateway to enable Open Client
connections can also be ignored.

SQL Preprocessor The SQL preprocessor is required only for
Embedded SQL, and is not needed by or provided for
PowerBuilder users.

SQL Remote The SQL Remote replication technology is not
included with PowerBuilder.

Multi-user network server Only a standalone database engine
is included with PowerBuilder. The multi-user network server is
not included in PowerBuilder.

Operating systems Only the version of SQL Anywhere for the
operating system you are using is included in PowerBuilder. The
SQOL Anywhere User’s Guide describes all platforms for which
SQL Anywhere is available.

In addition, note that the sample database is referred to throughout by
the file name SADEMO.DB. This sample database is the same as the
Powersoft demo database (PSDEMODB.DB), and all examples in this
book will work against the Powersoft demo database.

Contents

About This Manual

PART ONE

PART TWO

4

... '

Introduction to SQL Anywhere

11 8eTo 11 Tz (o T o 1 3
About SQL ANYWNETE ..o 4
Upgrading databases to SQL Anywherecccccueeeeeuveennnne. 7
About this manual.............cccouiiiiiiee e 8

New Features in SQL Anywhere 5...........cccoveeemerrrrrrccenenenns 13
What's in @name?.........coooviiiieeeeeee e 14
New features OVEIVIEWcccoveveeeeeeeiecceeeee e 15
New features in the Watcom-SQL language.................cc.uo........ 18
New sample database ..., 21

Overview of SQL AnyWhere.........ccccceeercerrrmererssssssneesssssnnnns 23
The SQL Anywhere engine and the SQL Anywhere server 24
Running SQL Anywhere on a single computer.......................... 25
Running SQL Anywhere on a Networkcoceeeeeeeveeeeeennnnn. 29
Running mixed operating systems on a single compuiter........... 32
SQL Anywhere programming interfacescccceeveeeerennnee... 34
The SQL Anywhere programs.............cccceeeeeeeeerveeeeeeeceeeeeennen. 36

Tutorials

Managing Databases with Sybase Central.......................... 45
Sybase Central and database management 46
Navigating the main Sybase Central windowcc.......... 47
Adding a table to a databaseoevveeeeeeiiiiiiiieiiieeeeeeeeen, 52
Viewing and editing procedures..............cccccueeeeeeeeeecceeeeceeee 57
Managing users and grouPS.........cccueeevuueeeeeeeieeeeeeeeeeeeeeeeee e 60

Backing up a database using Sybase Central............................ 63

Using the Sybase Central online help.............ccccciiiiis 65
Using ISQL......ccccovimmriiininiienniiinsssssssss s ssss s sms s 67
The SQL Anywhere program groupcooeeuueeeeeeeeiiinnneeeeenenns 68
Starting SQL Anywhere..........ccoeeviiiiiiiiiiiiiiince e 69
Connecting to the sample database from ISQL 70
Accessing Help from ISQL.........ccccoiiiiiiiiiiiieece 71
The ISQL command WiNdOWccceeeiiiiiriniiiiiiiinen e 72
Leaving ISQL......ccoiiuieeiiieereeee ettt 73
Displaying data in ISQLcooiiiiiiiiiiiie e 74
Command recall in ISQL.......ccccooiiiiiiiiiieeecerreee e 76
FUNCHON KBYS...ooiiiiiiiie e 78
Canceling an ISQL commandcccccciiiiiiineiennnieeeceeeees 79
VAT P R = U 80
Using Character-Mode ISQL.......ccceeirimmmmnneeeee s 81
TUtorial fileScee it 82
Starting the SQL Anywhere software..............cccoeiiiieiiiiiinens 83
Connecting to the sample database from ISQL 84
ISQL menu selection.........c.uuuuiiiiiee e, 85
Obtaining help from ISQLccoooiiiiiiiiiii 86
The ISQL command WINAOWccceiieriiiiiiiiiiiiiiiee e 87
Leaving ISQL......ccciiiirii i 88
Displaying data in ISQLccoooiiiiiiiiiii 89
Command window keys in ISQL...........c..euiiiiiiiniiiieeeenenes 91
Scrolling the data Window.............cccoiiiiiiii e 93
Command recall in ISQL...........oooiiiiriiiiiireeccerereeee e 94
FUNCHON KBYS. ..ttt e 95
Aborting an ISQL command............occuimeiiiiiiie 96
WHhat NEXI? .ottt 97
Selecting Data from Database Tablescccceeceririennnnne 99
Looking at the information inatablecc.ccooiiis 101
Ordering qUErY reSUIS.......ccoccureiriiiiiiei e 103
Selecting columns from atable............coociiiiiiiiiinni 104
Selecting rows from atable...........ccccooiii 105
Comparing dates in QUENIEScccceeiiiiiieeeeeiieiee e 106
Compound search conditions in the WHERE clause 107
Pattern matching in search conditions.............ccccccoviiiinnnnis 108
Matching rows by SouNd.............cociiiiiiiiiimiin s 109

Short cuts for typing search conditions............ccccoeeiiniiinnnnnn. 110

10

11

12

13

14

Joining Tables.........cccceeiecrrcececrereccee s ee e seeesnan 111
Displaying a list of tablesc..ccveeveeeiieieccie e, 112
Joining tables with the cross productcccccoovevieeeennnn.. 114
Restricting @ JOin.........ccoeiiieiiee e 115
How tables are related.............cc.ooooieiiiiiiic e, 117
JOIN OPEIALOrS......eeee it 118

Obtaining Aggregate Datac.cccceceeeeerrreeesieensserrsseennes 121
A first look at aggregate functions..............c..cccvveeeeeiceeenennn. 122
Using aggregate functions to obtain grouped data................... 123
Restricting groups..........cooicieeiuiie e 125

Updating the Databasec.cccceeermrrrcerrrcerersrcennccseeneans 127
Adding rows to atablecoocuviiiieinieiiieee e 128
Modifying rows inatable...........ccccceeeiieeeciicee e 129
Canceling Changescoouviiieeuieceeeeee e 130
Making changes permanent...............ccccoveeueieoeeeeeeeeeeeeeeeenn. 131
Deleting FOWS.cc.eiiiiiieee e 132
Validity ChecKingcoeveeeiiiiiee e 133

Introduction t0 VIEWS........ccccerecceerrcerrresrees e e 137
Defining @ VIEW.......cooiiiiiiiiiiiiee et 138
Using views for security..........ccccevveeiieeiecieccee e 140

Introduction to Subqueries........ccccccrerrirricerrn i 141
Preparing to use SUDQUENESeeeeieeeeeeeeeeeeeeeeeeeeeeeeen, 142
A SIMPIE SUDQUETYoeeiiiiieiieiiiee e 143
Comparisons using subqueriescc.ccccoeieceeee i, 145
Using subqueries instead of joinNs...........cccoooeoveeeeiieiieeeee, 148

Command Files........ccccirerricerrcccer s e as e aeeseas 151
Entering multiple statements in the ISQL Command window .. 152
Saving statements as command filescccoeeeeveeeeeeeen. 153
Command files with parameterscccocoveeeeceeeeeeenn. 154

System Tables..........ccooeeecereeercer s 155
The SYSCATALOG tableccccvvevieeeieeeeeeceeeeeee e 156
The SYSCOLUMNS table.........ccccooviieeiiieeeieccieeeeeeee 157
Other system tables............ccooeiuieiiiieeiieeeee e 158

PART THREE

15

16

17

18

19

20

Vi

Using SQL Anywhere
Connecting to a Database..........ccccvvriviiminnnnsssssssscsssnnnnnenes 161
ConNECtion OVEIVIEWcooiiiiiiiiieeii e 162
Connecting from the SQL Anywhere utilitiescccc.c..e.c.. 168
Connecting from an ODBC-enabled application 169
Designing Your Database.............ccccrmmeeemeesnnsssissssennnnnnees 181
Relational database conceptsccccceeeeiiiiiiiiiiiiiiicccis 182
Planning the database ... 185
The design ProCESScovviiiiiimeiee et e e 187
Designing the database table properties..............cccooiiiiinenneis 199
Working with Database Objects...........ccccccriierniiiienninnees 203
Using Sybase Central to work with database objects................ 204
Using ISQL to work with database objects.............cccccccunnnnneees 205
Working with databases ..., 206
Working with tables..........couumiiiiiii e, 211
Working With VIBWScooriiiiiiiiieicce e, 217
Working with indeXxes........cccouveieiiiiiiiiie e, 223
Ensuring Data Integrity.......cccccooiiiiiinnneeeesenenennneees 225
Data integrity OVEIVIEWcoooeeiiiiiiiiiecec e 226
Using column defaults...........ooooveeiiiiieiin e 230
Using table and column constraints..............c.cccoiiiiiieinnnne, 235
Enforcing entity and referential integrity ... 239
Integrity rules in the system tables ..., 244
Using Transactions and Lockscceirmiiiiiineinieinnnns 245
An overview of transactionseeevevveiriieeirniieinn e, 246
How 10CKiNg WOTKSccveiiiiieiiieeeeeeeeeee e 250
Isolation levels and consistencycceeeeviiiiiiiiiiiiiiccs 251
How SQL Anywhere handles locking conflictscccccee... 254
Choosing an isolation 1evelcceeieeieiiiiiiiiie e 256
Savepoints within transactionscccccceeeviiieieee e, 258
Particular cONCUIrenCy iSSUES.............cccvviiiiinininni e, 259
Transactions and portable computers...........cccooeviveeeemiciieenn. 262
Using Procedures, Triggers, and Batches....................... 265
Procedure and trigger OVerviewcooooeeeervemmienceeeneeeeecenee 266
Benefits of procedures and triggers........cccocecvveeeeiiiiiiiinieeenn. 267

Introduction to procedures.............cocceeuiruieeeeceeceeeeece e 268

Introduction to user-defined functions...................c..ccoveenen.n. 273
INtroduction to triggers......ccccvvueiieeieeceeeeteecee e 276
Introduction to batChescceoeeviiiiiiiiiie e, 281
Control statementsc.cocvueeeeiiicieecee e 283
The structure of procedures and triggersccccccuveeueneenn. 286
Returning results from procedures..............ccccooueevcuieeeeeennn. 290
Using cursors in procedures and triggersccoceeeeeeeeennn.. 295
Errors and warnings in procedures and triggers 300
Using the EXECUTE IMMEDIATE statement in procedures.... 307
Transactions and savepoints in procedures and triggers......... 308
Some hints for writing procedures.............c.cccceveueeieveeeeeeenn. 309
Statements allowed in batchescccccoveeveeeiiiiiieeeeeen. 312
Calling external libraries from stored procedures.................... 314
Monitoring and Improving Performance..........cccccucvrerunnee.. 319
Factors affecting database performance..........cccoeeeveveeeenen... 320
Using keys to improve query performance............cccceeeeeeeen... 322
Using indexes to improve query performance......................... 326
Search strategies for queries from more than one table.......... 328
Sorting query results...........ccoiiveieeeieecee e 331
Temporary tables used in query processing.........c...c.ocuu......... 332
How the optimizer WOrks..........c..oceouieecuieiceiecceie e 333
Monitoring database performancec.c.cccoveveeineeeeneenn. 336
Database Collations..........ccccoirererernscercsersseeessensse e 347
Collation OVEIVIEW...........covuieiieieeceecee e 348
Support for multibyte character setsccocveeeuveeceeecnnnnn. 352
Choosing a character Set...............cccoeeeeuiiiiiieecieee e 354
Creating custom collations...............ccceeueeiieeeeeeeeeeeeeeeeeeeeeea, 357
The collation file format............cccoeevieeiiiciiceccee e, 358
Importing and Exporting Data.........ccccceevervrerricnenscnnnsenn 363
Import and export OVEIVIEWceecueeeeuveecieeeeeeceeeeeeeeeeee 364
Exporting data from a database..............cc.ccccouveeeevieeeceee . 366
Importing data into a databasecccccoccveiiiiieeiceeeee. 370
Tuning bulk operationsccccceeveeeiieececce e 373
Managing User IDs and Permissions...........cccceeeeerveenmenens 375
An overview of database permissions...............cccccceveeeeennnen. 376
Managing individual user IDs and permissions 380
Managing groupPsS..........c.ccceererrirrireeseeeee e eeree e e 386
Database object names and prefixes...........ccoceeeeeeeeeceveeeennn. 391

25

26

27

viii

Using views and procedures for extra securitycccccuueee 393

How SQL Anywhere assesses user permissions...............eee.... 396
Users and permissions in the systemtables................cccceees 397
Backup and Data Recovery...........euummmmmmmneemnennenennnnnnnnn 399
System and media failures..............evveriiimiiiiinieciriieeee, 400
The SQL Anywhere l0gsccccommeemimnrreeeereene e 401
Using a transaction 10g Mirrorcceverieriiiiieeeneenecineeeeeeas 406
Backing up your database..............ccco oo, 411
Recovery from system failure ... 414
Recovery from media failure...........ccooviiiiiiii 416
Introduction to SQL Remote Replication............cccccuueeeee. 419
Introduction to data replicationc....ccceeeriiiiiiiiiiiiiiieee, 420
SQL ReMOte CONCEPLS ..evecuvvvriiiieeeeeeeiieeee e e e eevee e e 422
SQL Remote fEatUreseuveeveeeiiiiiiieceee e 427
Message systems supported by SQL Remoteccceeeeee.. 429
Tutorial: setting up SQL Remote using Sybase Central........... 430
Set up the consolidated database in Sybase Central............... 433
Set up the remote database in Sybase Central........................ 438
Tutorial: setting up SQL Remote using ISQL and DBXTRACT 439
Set up the consolidated databaseccoevveeiiiiiiiiiiiiiicinnnns 442
Set up the remote databasecccceeeeeiieiiiiieiie e 445
Start replicating data..........cceeeveemiieeeiiiini e 447
A sample publication................ueueimiiiiiiiri e, 450
Some sample SQL Remote Setupsccceeevvmiiiiiineereeerieennnnns 451
SQL Remote Administration........cccccceiviviiiismmmeninniisiennnns 455
SQL Remote administration overviewccccceeevivininnnnnnnn. 456
SQL Remote message types......ccevveeeeeeeeeiiiieieiiieaeeeeeeeee e 457
Managing SQL Remote permissions.............ccoccueeeeeeeeeennnnneenn. 463
Setting up publications.............ccovviiiiii i 470
Designing publicationsccooceiiiieeeniiniiiee 475
Setting up SUbSCIIPLIONScccoviiiiiiiiiiiiiiiiii, 483
Synchronizing databasescccuvuvuiiieerieeiiiie e 484
How statements are replicated by SQL Remote....................... 489
Managing a running SQL Remote setup: overview.................. 494
Running the SQL Remote Message Agent..........cccccecvvvevennnns 496
The SQL Remote message tracking system........ccccccceveeeennnnn. 500
Transaction log and backup management for SQL Remote503
Error reporting and conflict resolution in SQL Remote............. 507
Using passthrough mode for administration.............c.ccccccunees 513

28 Running Programs as Services..........cccceevemmerriiineeersesnnns 517

INtroduction t0 SEIVICES........eeicuviiiieeeee e 518
Managing SEIVICESc.eeeiuieeeiee e 519
Adding and removing SQL Anywhere services 520
Configuring SQL ANyWhere ServiCesccccoueeeeeeeeveeneeen. 522
Starting and stopping SErviCes.........c.cccoovvvvieieeceeeeeeeeeeeeeeen. 526
Running more than one Service.........c.ccocouveecveeeeeceeeeeeen. 528
Monitoring a SQL Anywhere network server service................ 531
The Windows NT Control Panel Service Manager.................. 532
PART FOUR Transact-SQL Compatibility
29 Using Transact-SQL with SQL Anywhere...........ccccvrrernnnee 535
An overview of SQL Anywhere support for Transact-SQL....... 536
SQL Server and SQL Anywhere architectures 539
General guidelines for writing portable SQL.......cccccccceveeeeeenns 543
Configuring SQL Anywhere for Transact-SQL compatibility 544
Using compatible data types............ccoceeevueieiieeieecciieeceeee. 549
Local and global variables...................... e 556
Building compatible expressions...........ccccocoeeceveeicieeecieecennen. 561
Using compatible functions..............ccocueeeveeiiccieeeeeeeeeeeee. 565
Building compatible search conditions.............cccccccccuverennnee... 576
Other language elementsc.ccceeeuiiiiieiceciee e 580
Transact-SQL statement reference..............ccccoeveeeecceiecnnnnne. 581
Compatible system catalog information.............c....cceccuue...... 598
SQL Server system and catalog procedures........................... 601
Implicit data type conversioncccccoueeeiieeeeeeciieeeeeeeen. 603
30 Transact-SQL Procedure Language............cccccevrrrvuneennnnns 605
Transact-SQL procedure language overview.......................... 606
Automatic translation of SQL statements................cccoeeune...... 608
Transact-SQL stored procedure overview............cccocveeeeeeeenn. 610
Transact-SQL trigger OVErVIieWccveeveeeeeeceeeeeceeeeeeen. 611
Transact-SQL batch overviewcccocooveveeeeeiieeeiceeeee. 613
Supported Transact-SQL procedure language statements...... 614
Returning result sets from Transact-SQL procedures.............. 624
Variable and cursor declarations.............c..cccceeevvveeiieeecereeenen. 625
Error handling in Transact-SQL procedures..............cc............ 627
31 Using the Open Server Gatewayccccceeeeviineerssscnennns 629
Open Server Gateway OVEIVIEWc...ccuveeevemmeeeeeeeeeeaeeeennn 630
Open Server Gateway architecture.................coeeeeevereeneeenne.. 632

Data type Mappingscccveeeeeeiirieiiieieee e 634

Setting up the Open Server Gateway...........ccccoveeerreeeeiieenennnn. 642
Events handled by Open Server Gateway............ccccovruuvereeennn. 646
Using SQL Anywhere with OmniCONNECTcccceviineeenns 649
PART FIVE The SQL Anywhere Programming Interfaces
32 Programming Interfaces...........cccoccmeriiiimmeiinsennsnsecnnnnnnnes 653
33 The Embedded SQL Interface........cccccemmmmmmmmmeriiininninnninnnn, 655
The C language SQL preproCessorcccoeeeeercemrrvennieeeneeneeen. 656
Embedded SQL interface data types.......ccccccoovvieeeiiiniineenenn. 664
Host variables..........coov i 667
The SQL communication area (SQLCA)ccccvveeeiieeieeenennns 673
Fetching data..........cccooiiiiiiiiii e 677
Static vs dynamic SQL..........oeeeeiiiiiiiiiireeee e 682
The SQL descriptor area (SQLDA)......ccccoveieiivinniie e 690
SQL procedures in Embedded SQL ..., 696
Library functionscooiiiieieiiiiiicee e 701
Interface library DLL dynamic loadingccccceeiniiiininnnnenn. 723
Embedded SQL commandsc...uceeiriirieiiiimiiicceeee e 727
Database examplesccccceeeeiiiiiiiiiieeeeee e 730
SQLDEF.H headerfileccoovvvmiieeeiiiieeeeeeeee e 747
34 ODBC Programmingcceeeseeeessssssssassssssensmsssssssssssssesnsnses 751
ODBC C language programming...........c.eeeeeeeeeeeereeereercienaneann 752
ODBC programming for the Macintoshccccccriiieninnnn. 762
35 The WSQL DDE Server......ccccccuimumisssssssnssesmsmmssssssssssssssnnans 765
DDE CONCEPES .. uuuuuuitiiiee e e eeeeeeeire e e e e e e eeeeecranae e e s e e eeeeeeeeees 766
Using WSQL DDE Server........cccoovciieiiririeee e 768
Excel and WSQL DDE Serverccceoviiiveeiieiieinaeeeeeeeeeeenenes 772
Word and WSQL DDE Server.......cccoeiviiiieeeieieeeeeeee e 774
Visual Basic and WSQL DDE Server........ccccoccveviiinininnninnnnn. 775
36 The WSQL HLI Interfacecccccvrvciininnemmmmenmnsssssseennsennnnnns 779
DLL CONCEPLS......uueereeiieieiieirce i e ee e 780
USiNg WSQL HLI ..ot 781
Host variables with WSQL HLI...........ccccooiiiiiiei, 782
WSQL HLI fUNCHONSevieeieeiiiireeeee et 783
wsglexec command StriNgSeeeveeiiiiiiiiieieiieee, 790

WSQL HLI and Visual BasiC.......c.coeeeemeeeeeeeeeeeeeeeeeeeeeeeeaeenn 798

WSQL HLI and REXX......ceeiiiieeeieeeee e 802
PART SIX SQL Anywhere Reference
37 SQL Anywhere Components.............ccocvemmemeeeeeserercrcssereees 807
SQL Anywhere components overviewcccccceeceecuvvvennene. 809
Registry entries and environment variables 810
Software component return codescccoooeeeeeiiiiiieeeeinannn. 813
The database engine...........cccoeeicieeeeiciiie e 814
The Backup Utility.........cccoevrriiiiiieeee e, 824
The Collation utility............ccccevriiiiiiiiiiiiec e, 829
The Compression utilitycccceeeeiiiiiiee e, 832
The Erase Utilitycccovveeeiiieeiccee e 834
The Information utility...........cccooeoiiiiiiiieccee e, 837
The Initialization utilitycccooeiiiiiieeecc e, 839
The ISQL Utlity ..oo.eeeieiie e, 846
The Log Translation utilityccceeveeieiciiiiieeee e, 849
The Open Server Gatewayc.ceeeeeueeeeeiieeeeeeeiieeeeeeeesaees 853
The Open Server Information utility.............ccccceeeveiieieiiieennes 855
The Open Server Stop utilityccooeeeiiiiiiieeeieeceee e 856
The REBUILD batch or command file.................ccccoveeiieenn... 857
The SQL Remote Database Extraction utility.......................... 858
The SQL Remote Message Agentccccceveeeeeieecieeccnnneee. 863
The Stop UtIlITY «...eeeeeiee e 867
The Transaction Log utilityccccceeriiieiiieniieecee e 869
The Uncompression Utilitycccceeeeecieeciciieececceee s 873
The Unload utilityccoooeiieiiiiee e, 876
The Upgrade Utilitycooooiimmiiiiiieeeeccceeee e, 882
The Validation utilityccccouiiiieiiiiciiee e 885
The Write File utilitycccoeveriiie e 888
The SQL PreproCessor........cccuveiueeeeieeeeitieeeeeeeeeeeeee e 892
38 Watcom-SQL Language Reference.........ccccceeeerrcrecncennes 895
Syntax ConVeNtionscccoeruieeriiieeiie e 896
Watcom-SQL language elements........ccccceevvieeecieecciec e, 897
EXPreSSIONS......oiiiiiieiieiee e eetie ettt e e 899
Search conditions.............ooceeeiiieeeiieeeeeece e 907
Comments in Watcom-SQlL...........ccceeevieeiiieciieeececcee e, 915
39 SQL Anywhere Data Types......ccccccceecerrerremrersssssnensnssssnnes 917
Character data typescoceeveeeeeeeiieee e 918

Numeric data types........covveimiiiiiieiiiiie e 920

Date and time data typesccoeeeeiiiiiiiiiiceee e 922
Binary data typescooooeeriiiiiii s 926
User-defined data typescccooeeeeeeriiiieieeeeee 927
Data type CoOnVversions..............coooivviiiiiiiiiiiiieieeeeee e 929
Year 2000 COMPlaNCEcccvvvreiiireiiiiiieeiee et 930
40 Watcom-SQL FUNCLIONS.....cieeuiemeeeeecirmecreceernesaeernesnmnsnnnnes 935
Aggregate fuNCONSccccuviiiiiiiiniec e 936
NUMEIC FUNCHONS ..ot e e e e e e e e e eeans 938
SNG fUNCHONS ...t e 941
Date and time fUNCHONSc..iveiieieee e 945
Data type conversion functionsc. 951
System fUuNCHONScocoviiiiiiiiii e 953
Miscellaneous fUNCHONSouniuieieee e e e 965
41 Watcom-SQL Statementscecceeecreeireeirmerreseneesrsesrmesenssnnns 969
ALLOCATE DESCRIPTOR statement...........cccooovvveireennineeeeees 970
ALTER DBSPACE statement.........ccoeevveiiiieeeieeiiiieeeeeceeeeeeeeen 972
ALTER PROCEDURE statementcooevviieeiiiiiiiieeeeeeeeees 974
ALTER PUBLICATION statementcccoeiiiiiiiiiiiiieceeae 975
ALTER REMOTE MESSAGE TYPE statement....................... 976
ALTER TABLE statementccovnimniiii e 977
ALTER TRIGGER statementcccoeiviieieiiieieeveeeeee e 982
ALTER VIEW statementc.oovveiiieiiieeeeeeeeee e e 983
(07 Y=Y 721 =Y 1 17=) 2| SO UUUU N 984
CASE Statementooneeeeeeeeee et e e e e e e e e s 986
CHECKPOINT statement.......c..ooveeieeiiieeeeeeeieeeeeeee e eenaeeens 988
CLOSE Statement coeeeeeeeeeeeeeeeee et e e e e e e e eeaaeeen 989
COMMENT Stat@mMENt......cceneeeeeeeeeee e e e e e reanees 991
COMMIT StatemMenteeeeeeeeeeeeeeee et e e eees 993
Compound statementsccccoooorieiiiiiiiiiii s 995
CONFIGURE statement........c.covniieiiieie e 998
CONNECT Statementcouvevvniiiieeiiieeeiee e e e e eeaeeena e 999
CREATE DATATYPE statement..........ooeeeieiiiiiiiieeeee 1002
CREATE DBSPACE statement.........ccocouviviiiiiiciiincieeeeeee, 1004
CREATE FUNCTION statementoooouiiiiiiiiiieieeiieeeeeeennn, 1005
CREATE INDEX statement...........ccoouveiiuieiiieeeeee e eeeeeees 1007
CREATE PROCEDURE statementc.ccoeeveeieemeieeeineennnnes 1009
CREATE PUBLICATION statementccooeveieeniciiiineennnn. 1013
CREATE REMOTE MESSAGE TYPE statement.................. 1015
CREATE SCHEMA statement.........cccoovviiiiiiiireeee e 1017
CREATE SUBSCRIPTION statementcccooeveeeieieiiiceennnns 1019
CREATE TABLE statementc.ooevveiiiiieiieeeeeeeee e 1020

xii

CREATE VARIABLE statementcccoeeeeeeeeeeeeeeeeeeeeen, 1031
CREATE VIEW statementccooeeeeeeeeeeee e 1033
DBTOOL statement........ccuueeeeeeeeeeeeeeee e 1035
Declaration SECHONcoeevuee e 1038
DECLARE CURSOR statement..........cooeeeeeeeeeeeeeeeeeeeaeernnn 1039
DECLARE TEMPORARY TABLE statement...............o......... 1043
DEALLOCATE DESCRIPTOR statementccccceuueeeeennnnnn.. 1044
DELETE statement..........oouuiieiieeee e 1045
DELETE (positioned) statementcccoeooeiiiiiiiiiiiin, 1047
DESCRIBE statementooooeieeeeeeeee e, 1049
DISCONNECT statementccoeweeeeeeeee e 1052
DROP statementoceeeeeeeeeeeeeee et 1053
DROP CONNECTION statement.........ccoveeeeeeeeeeeieeeeeaeennnn. 1055
DROP OPTIMIZER STATISTICS statement........ccoeeevvevenn... 1056
DROP PUBLICATION statement..........cooeeeeeieeeeeieeeeeeeeeennnn, 1057
DROP REMOTE MESSAGE TYPE statement.....c....cc.......... 1058
DROP STATEMENT statement.......c..ueeeeeeeeeeeeeeeeeeeeeeeaeen, 1059
DROP VARIABLE statementccooveeeeeeoeeeeeeeeeeeeeaaaennn. 1060
DROP SUBSCRIPTION statement........cccooeeeeveeeeeeieeeeenn, 1061
EXECUTE statement.......ccoueiieiieeeeeeeeeeeeeeeeee e 1062
EXECUTE IMMEDIATE statementcooovvueeeeeeeeeeeeeeennn. 1064
EXIT statementcoovmeiiee e 1065
EXPLAIN statement.........cc.oeieeemeeeeeeeeeeeeeeee e, 1066
FETCH statement..........cooovneeieeeeeeeeeeeeeeeeeeeeee e, 1068
FOR StatemMent.........ccouuiiiiieeie et 1073
FROM CIAUSE ... 1074
GET DATA Statement........cooememeeeeeeeeeeeeeeeeeeeee e 1081
GET DESCRIPTOR statement..........coovuuueoeeeeeeeieeeeeeeeenannn, 1083
GET OPTION Statementc..oeeeeeeeeeeeeeeee e 1084
GRANT StatemMent......coeeeee e 1085
GRANT CONSOLIDATE statement...........ueeeeeeeeeeeeeeeeeenn... 1089
GRANT PUBLISH statementcoooveeeeeeeeeee e 1091
GRANT REMOTE statement...........cooooveeeeeeeeeeeeeeeeeeeeeeenn 1092
HELP statementooomeiiee e 1094
IFstatementiieee e 1095
INCLUDE Statementccoeeeeeeeeeeeeeee e eeeeeeeeeaa e 1097
INPUT statement..........coovieeeeeieeeeeee e 1098
INSERT statementoooveiiiie e, 1102
LEAVE statement..........cooovveiiieieeee e 1104
LOAD TABLE statement.........coooueoeeeeeeeeeeeeeeee e 1105
LOOP statementcooommeeeeeeeeeeeeeeeeeee e, 1108
MESSAGE statement........ooooveeeee e, 1109
NULL VAIUE e 1110
OPEN statementoouoiiieeee e 1112
QUTPUT statement..........coovmeeeeee e 1115

PARAMETERS statement.........ccoooiuiiieiiiiieieeieeeeeee e 1118

PASSTHROUGH statement........c.oceuueeiieeneiiiiieeeeeeeeneeeeennnas 1119
PREPARE statement ..o e 1120
PREPARE TO COMMIT statement.........ccccooeeuiieeeeeininneeennnn. 1123
PUT Statement.coneeiieeeeeeeee e e e e e e e aas 1124
READ State@mentcc.ooiiiieiee et eee e e e e e eeaan s 1126
RELEASE SAVEPOINT statement..........cccoeeeviiieeeciiiineennnnes 1127
RESIGNAL Statementcouevieeiiiieiiieiieeeeeee e eeeer e 1128
RESUME statement........coovuueiiiiiieeeeeeee e et eeeas 1129
RETURN Statementoeeeieeeee e e e e e e e 1130
REVOKE Statementuieeuniiiiiiiieeeii e eeee e e e eeeeeneeeaee 1132
REVOKE CONSOLIDATE statement..........ccooeueieniiineneennnn. 1134
REVOKE PUBLISH statementcoovueieiiieiieieeeieeeeeeeee 1135
REVOKE REMOTE statementcccoevueeeeiievceeeiiieiceeeeeenn, 1136
ROLLBACK Statementovveieeiieeeee e eeeeeiee e e eeeeaeenanes 1137
ROLLBACK TO SAVEPOINT statement........ccccooveeeeneennnnen. 1138
ROLLBACK TRIGGER statementcccceeveivuveeeeeieeeeeennn. 1139
SAVEPOINT statement........c..oouiiniieiiiieeeeeeeieeee et eeeennns 1140
SELECT Statement ...c...oeeeeeeeeee e eee e e e e v e e eees 1141
(o] = B =1 =)0 10=) £ 1 SN 1145
SET CONNECTION statementccoevveeeiiiiieeieeneeecieeenns 1147
SET DESCRIPTOR statementcc..coveiiiiieeieeeieeeeeeeeeenns 1148
SET OPTION statementcouvieeiiiiiieee e e e eeaeeees 1149
SET SQLCA statementcouoiieiiiiiiiiieeeeeeeeeeee e 1170
SIGNAL State@mMeNtcoceevveeieeieeeeeeeeeeeeeeeeeeere e s e e eaeseeea s 1171
START DATABASE statement.........ccoouveieeiieiiiiieeieeieeeennns 1172
START ENGINE statement........c.cooeuviieiiiiieeeee e e 1173
START SUBSCRIPTION statement.........ccccoovuieeeieeiiicicennens 1174
STOP DATABASE statementcccuuveveiiiiieeiieeceeeeececnes 1175
STOP ENGINE statement........ccoouviieiieeiieeeeeieeeeeeeeeeeeeees 1176
STOP SUBSCRIPTION statement........ccccoeeeeiiieieeiiiiieeeennns 1177
SYNCHRONIZE SUBSCRIPTION statement...........cccoeeeeee. 1178
SYSTEM State€meNntooeeeeiiee e e e e e e e eeeeees 1179
TRUNCATE TABLE statement.............oiieiiiieeiiiiieeeeneeeeennn. 1180
UNION 0perationcccceereerreriiineceiiiineee s sieesesssinanea s 1181
UNLOAD TABLE statementccoeeeieiiieieeeeeeeeeeeeeeeeann 1182
UPDATE Statement..........oviveiieeiee et eeieeeae e e e e e e 1183
UPDATE (positioned) statementcccccccoeivnnn. 1186
VALIDATE TABLE statement.......cccooveiiiiiiiiiieceeeen 1187
WHENEVER statementoveeeiiiiieiieieecce e eeee e e 1188
42 SQL Anywhere Database Error Messages 1191
Error message index by SQLCODEccccooiiiiiiinnie. 1192
Error messages index by SQLSTATEccccocoiiiiis 1201
Alphabetic list of error messagesccoccievirniiinnninen. 1210

xiv

43

44

45

46

47

48

49

50

Internal errors (assertion failed)ccccevieiiiiineniiiieeeee 1296

SQL Preprocessor Error Messages.........c.cceeceeerrrerrrnecanns 1297
SQLPP BITOISoeeeiiie et 1298
SQLPP WarNINGSccuvviiiiiiiiiii et eee e eaea e 1307

Differences from Other SQL Dialectsccccceececeeneneens 1309
SQL Anywhere features...........cccoueeeeieieeeeeceieee e 1310

SQL Anywhere Limitations..........cccccceccerrericccmrrerenrncncnnes 1313
Size and number limitationsccccceeeiiieieiiee e, 1314

SQL Anywhere Keywords.........cccccecemmmresssmcemenseeessesssnnnns 1315
Alphabetical list of keywords............cccceevieeecieeiiiiiieiieree, 1316

SQL Anywhere System Procedures and Functions....... 1319
System procedure OVEIVIEWccceeecuiiiiieeeeeeeeeeeeeeeeeeeenen, 1320
Catalog stored procedures.............coveveeeeeecieeeeececieeeeeee e, 1321
System extended stored procedures............cccceceeuveeeeenrennnnn. 1323

SQL Anywhere System Tables.........cccceevrremcerriececececnnnes 1329
System tables diagram............ccccoooiiiiiiiiii e 1330
Alphabetical list of system tables.............cccccovvveerieeinnenennn... 1331

SQL Anywhere System Viewscccceeevemeeemreersssscssnnnns 1355
Alphabetical list of VIEWScccuiiiiiiiiiiieiiieeeeeeeeeeeeeee 1356

GlOSSANYuueeeiciiiiirrssrrsassssssssnmnesnsesssssssssmnnnsnnenensssnssnsnnnnnns 1363

XV

PART FIVE
SQL Anywhere Reference

This part provides reference information for the Sybase SQL Anywhere
database management system, including the software components, SQL
language, error messages, system tables, and so on.

CHAPTER 87

SQL Anywhere Components

About this chapter

Contents

SQL Anywhere includes a set of utility programs in addition to the database

engine. The utility programs include tools for backing up databases and

performing other database administration tasks. This chapter provides
reference information for each of the SQL Anywhere components, including

the database engine and the accompanying utility programs.

& Users of SQL Anywhere for Unix platforms, please see "SQL
Anywhere components overview", on page 809.

Topic Page
SQL Anywhere components overview 809
Registry entries and environment variables 810
Software component return codes 813
The database engine 814
The Backup utility 824
The Collation utility 829
The Compression utility 832
The Erase utility 834
The Information utility 837
The Initialization utility 839
The ISQL utility 846
The Log Translation utility 849
The Open Server Gateway 853
The Open Server Information utility 855
The Open Server Stop utility 856
The REBUILD batch or command file 857
The SQL Remote Database Extraction utility 858
The SQL Remote Message Agent 863

807

SQL Anywhere components overview

808

Topic Page
The Stop utility 867
The Transaction Log utility 869
The Uncompression utility 873
The Unload utility 876
The Upgrade utility 882
The Validation utility 885
The Write File utility 888
The SQL Preprocessor 892

Chapter 37 SQL Anywhere Components

SQL Anywhere components overview

This chapter presents reference information on the programs and database
administration utilities that are part of SQL Anywhere. The utilities can be
accessed from Sybase Central, from ISQL, or as command-line programs.

For comprehensive documentation on Sybase Central, see the Sybase
Central online Help. For an introduction to the Sybase Central database
administration tool, see the chapter "Managing Databases with Sybase
Central". For information on the SQL Anywhere Service Manager, see the
chapter "Running Programs as Services".

The SQL Anywhere programs use a set of system environment variables.
These variables are described in "Registry entries and environment
variables" on page 810.

The SQL Anywhere programs also use a standard set of return codes. These
return codes are described in "Software component return codes" on page
813.

SQL Anywhere for Unix platforms

The syntax for starting SQL Anywhere components on Unix platforms
differs slightly from other platforms. On Unix platforms such as Sun
Solaris, IBM AIX, HPUX or QNX, SQL Anywhere programs are
executed with commands typed in the lower case, and program files do
not have an .EXE suffix.

Versions of SQL Anywhere for Unix platforms have only the command
line utilities, a character mode ISQL utility and a standalone version of
the database available.

809

Registry entries and environment variables

Registry entries and environment variables

SQL Anywhere uses a set of system variables to store various types of
information necessary for running the software. These system variables are
stored in registries, INI files, or environment variables, depending on the
operating system. Not all system variables need to be set in all
circumstances.

The following is a list of system variables used by SQL Anywhere and a
description of what they are used for.

SQLANY environment variable

Syntax

Description

SQLANY = path

The SQLANY environment variable is used to contain the directory where
SQL Anywhere is installed. The default installation directory is
C:\SQLANYS50. The install procedure automatically adds the SQLANY
environment variable to your startup environment. The SQLANY variable is
used by the batch files or command files that build the Embedded SQL
examples.

In QNX, SQL Anywhere is installed in a fixed directory and the SQLANY
variable is not required.

SQLCONNECT environment variable

Syntax

Description

810

SQLCONNECT = keyword=value; ...
SQLCONNECT = keyword#value ; ...

The SQLCONNECT environment variable specifies connection parameters
that are used by several of the database tools to connect to a database engine
or network server. This string is a list of parameter settings of the form
KEYWORD-=value, delimited by semicolons. The number sign "#" is an
alternative to the equals sign, and should be used when setting the
connection parameters string in the SQLCONNECT environment variable,
as using "=" inside an environment variable setting is a syntax error.

The keywords are from the following table.

Verbose keyword | Short form

Userid l UID

Chapter 37 SQL Anywhere Components

SQLPATH environment variable

Syntax

Description

SQLREMOTE environment variable

Syntax

Description

SQLSTART environment variable

Syntax

Verbose keyword Short form
Password PWD
ConnectionName CON
EngineName ENG
DatabaseName DBN
DatabaseFile DBF
DatabaseSwitches DBS
AutoStop AutoStop
Start Start
Unconditional UNC
DataSourceName DSN

& For a description of the connection parameters, see "Database
connection parameters" in the chapter "Connecting to a Database".

SQLPATH = path...

PATH = path,...

ISQL searches along SQLPATH for ISQL command files and Help files
before searching the system path.

SQLREMOTE = path

Addresses for the FILE message link in SQL Remote replication are
subdirectories of the SQLREMOTE environment variable. This variable
should point to a shared directory.

SQLSTART = start-line
SQLSTARTW = start-line

811

Registry entries and environment variables

Description Historical. The SQLSTART environment variable information has been
added to the SQLCONNECT environment variable as the start parameter.

TMP environment variable

Syntax TMP = directory
TMPDIR = directory
TEMP = directory

Description The database engine creates temporary files for various operations such as
sorting and performing unions. These temporary files will be placed in the
directory specified by the TMP, TMPDIR, or TEMP environment variables.
(The database engine takes the first one of the three that it finds.)

If none of the environment variables is defined, temporary files are placed in
the current directory.

812

Chapter 37 SQL Anywhere Components

Software component return codes

All database components use the following executable return codes. The
header file SQLDEF.H has constants defined for these codes.

Code Explanation

0 Success

1 General failure

2 Invalid file format, and so on

3 File not found, unable to open, and so on
4 Out of memory

5 Terminated by user

6 Failed communications

7 Missing required database name

8 Client/server protocol mismatch

9 Unable to connect to database engine
10 Database engine not running

11 Database server not found

254 Reached stop time

255 Invalid parameters on command line

813

The database engine

The database engine

Syntax

Windows 3.x
syntax

814

dbeng50 [engine-switches][database-file [database-switches], ...]

rtdsk50 [engine-switches][database-file [database-switches], ...]

dbeng50w [engine-switches][database-file [database-switches], ...]

rtdsk50w [engine-switches][database-file [database-switches], ...]

dbeng50s [engine-switches][database-file [database-switches], ...]

rtdsk50s [engine-switches][database-file [database-switches], ...]

Switch Description

@filename Read in switches from configuration file
@envvar Read in switches from environment variable
-b Run in bulk operations mode

-¢ cache-size

-gb level
-gc num
-gd level
-ge size
-gf

-gk level
-gn num
-gp size
-gr num
-gs size
-gW num
-gX

-m

=N name

Set maximum cache size

Disable asynchronous I/O (OS/2, Windows NT, NetWare only)
Force direct I/O (Windows 3.1, DOS only)

Use direct I/O if possible (Windows 3.1, DOS only)
Automatically shut down after last database closed

Set database process priority class to level

Set checkpoint timeout period

Set database starting permission

Sets the stack size for threads that run external functions
Disable firing of triggers

Set permission for stopping the engine using DBSTOP

Set number of threads

Set maximum page size

Set maximum recovery time

Set thread stack size

Set the interval (in milliseconds) for background processing
Disable dual threading

Truncate transaction log after checkpoint

Name the database engine

Chapter 37 SQL Anywhere Components

Recovery switches

Database switches

Description

Switch Description

-q Quiet mode—suppress output

-ta sec Scan time for terminated applications:—default 30 seconds

-u Use buffered disk I/O (Windows 95 and Windows NT only)

-V Log old values of all columns on UPDATE or DELETE for all
databases

-y Run as a Windows 95 service

Switch Description

-a log-file Apply named transaction log file

-f Force database to start without transaction log

Switch Description

-m Truncate transaction log after checkpoint

-n name Name the database

-V Log old values of all columns on UPDATE or DELETE

There are several versions of the SQL Anywhere database engine, and each
version has a different executable name. The database engine for platforms
other than Windows 3.x is named DBENG50.EXE, the 32-bit and 16-bit
Windows 3.x executables being DBENG50W.EXE and DBENG50S.EXE
respectively. The runtime database engine is named RTDSK50.EXE, with
the 32-bit and 16-bit Windows 3.x executables being named
RTDSKS0W.EXE and RTDSK50S.EXE respectively.

The SQL Anywhere standalone database engine is completely compatible
with the SQL Anywhere network server (DBSRV50.EXE). Client
applications developed on one run against the other without alteration. For
information about the network server and its command-line switches, see
the SQL Anywhere Network Guide.

The 32-bit versions of the Windows 3.x database engine have much better
performance than the 16-bit versions. They require Windows 3.x running in
enhanced mode.

The database engine can be started with a number of database files or no
database files. Command-line switches specified before any databases apply
to the engine and all databases. Switches specified after a particular
database file apply only to that database.

815

The database engine

Engine switches

816

Client applications can load additional databases dynamically after the
database engine has started. However, only databases of the same or smaller
page size can be loaded dynamically.

If a database-file is specified without a file extension, SQL Anywhere first
looks for database-file with extension WRT (a write file), followed by
database-file with extension DB.

The database engines are programs that run as a separate task.

In DOS, the database engines are DOS terminate and stay resident
programs (TSRs), meaning that they will load into the memory of your
computer and then return control to DOS.

Runtime database engines are available with the SQL Anywhere Desktop
Runtime System for DOS, Windows 3.x, OS/2 and Windows 95 or NT.

The runtime engine does not allow ALTER, CREATE, COMMENT or
DROP commands. GRANT and REVOKE will allow you to add new users
and change passwords but changing permissions on tables is not allowed.
Also, the runtime database engine does not employ a transaction log
(although it is a fully transaction-processing database engine) and does not
support stored procedures and triggers.

Supplying command-line switches in a configuration file

A set of command line switches can be stored in a configuration file or in
an environment variable. The database engine can be instructed to use
these switches using the @ command-line switch.

@filename Read in command-line switches from the supplied file.

The file may contain line breaks, and may contain any set of command line
switches. For example, the following command file holds a set of command
line switches for an engine that starts with a cache size of 4 Mb, a name of
myserver, and loads the sample database:

-c 4096

-n myserver
c:\sglany50\sademo.db

If this configuration file is saved as C:\CONFIG.TXT, it can be used in an
command line as follows:

DBENG50 @c:\config.txt

Chapter 37 SQL Anywhere Components

@environment-variable Read in command-line switches from the
supplied environment variable. The environment variable may contain any
set of command line switches. For example, the first of the following pair of
statements sets an environment variable holding a set of command line
switches for a database server that starts with a cache size of 4 Mb and loads
the sample database. The second statement starts the database server:

set envvar=-c 4096 c:\sglany50\sademo.db

DBENG50 @envvar

-b Use bulk operation mode. This is useful when loading large quantities
of data into a database.

In bulk operations mode, the database server allows only one connection by
one application. It does not keep a rollback log or a transaction log, and the
multi-user locking mechanism is turned off. You should use a new log file
when starting the database engine or server after loading data with the -b
switch.

Bulk operation mode does not disable the firing of triggers.

&> For more information on loading and unloading data, see "Tuning
bulk operations" in the chapter "Importing and Exporting Data".

-c cache-size Set the size of the cache. The database server uses extra
memory for caching database pages if it is set aside in the cache. Any cache
size less than 10000 is assumed to be K-bytes (1K = 1024 bytes). Any cache
size 10000 or greater is assumed to be in bytes. The cache size may also be
specified as nK or nM (1M = 1024K). By default, the database server usess
2 megabytes of memory for caching. The more cache that can be given the
engine, the better will be its performance.

-d disable asynchronous /O This option applies to Windows NT, OS/2
and NetWare systems only. Use synchronous rather than asynchronous I/O.
Asynchronous I/O is the default for these systems and should offer
performance improvements.

-df force direct /O This option applies to DOS and Windows 3.x systems
only. Use direct I/O rather than DOS I/O. DOS I/O is the default. See the -
di option for a description of direct I/O.

-di use direct I/O if possible This option applies for DOS and Windows
3.x only. Analyse the disk hardware and software and use direct I/O if
possible. The default is to use DOS I/O.

817

The database engine

818

As databases increase in size and get more fragmented, direct I/O can
provide a significant increase in performance. However, direct I/O does not
work with all disks. Using the -di option causes the engine or server to
attempt to determine whether direct I/O will work with the current
configuration. If direct I/O cannot be used, a message will be displayed on
startup.

Windows 95 /O
Asynchronous I/O is not supported in Windows 95 environments.

-ga Applications can cause databases to be started and stopped by the
engine. Specifying this switch causes the engine to shutdown when the last
database is stopped.

-gb level 0OS/2 and Windows NT only. Sets the database process priority
class to level. Level must be one of idle, normal (the default), high, or
maximum. idle is provided for completeness, and maximum may interfere
with the running of your computer. low and high are the commonly used

settings.

-gc num Sets the maximum desired length of time (in minutes) that the
database server will run without doing a checkpoint.

When a database server is running with multiple databases, the checkpoint
time specified by the first database started will be used unless overridden by
this switch.

&~ For more information about checkpoints, see the
CHECKPOINT_TIME option in "SET OPTION statement" in the chapter
"Watcom-SQL Statements".

-gd level Set the database starting permission to level. This is the
permission level required by a user to cause a new database file to be loaded
by the server. The level can be one of the following:

¢ dba Only users with DBA authority can start new databases.
¢ all All users can start new databases (the default).

¢ none Starting new databases is not allowed.

-ge size Sets the stack size for threads running external functions, in
bytes. The default is 16384 (16K). This switch is used only for OS/2,
Windows NT, and NetWare.

-gf Disables firing of triggers by the server.

Chapter 37 SQL Anywhere Components

-gk level Sets the permission required to stop the database engine using
DBSTOP to level. The level can be one of the following:

¢ dba Only users with DBA authority can use DBSTOP to stop the
engine.

¢ all All users can use DBSTOP to stop the engine (the default).
¢ none The engine cannot be stopped using DBSTOP.

-gn num Sets the number of execution threads that will be used in the
database server while running with multiple users.

& For more information, see the THREAD _COUNT option in "SET
OPTION statement" in the chapter "Watcom-SQL Statements".

When a database server is running with multiple databases, the thread count
specified by the first database started will be used unless overridden by this
switch.

-gp size Sets the maximum page size allowed, in bytes. The size specified
must be one of: 512, 1024, 2048, or 4096. When a database server is
running with multiple databases, the page size specified by the first database
will be used unless overridden by this switch. Without using this option, an
attempt to load a database file with a page size larger than the page size of
the database first loaded will fail.

-gr num Sets the maximum desired length of time (in minutes) that the
database server will take to recover from system failure.

&> For more information, see the RECOVERY_TIME option in "SET
OPTION statement" in the chapter "Watcom-SQL Statements".

When a database server is running with multiple databases, the recovery
time specified by the first database started will be used unless overridden by
this switch.

-gs size Sets the stack size of every thread in the server. The value
entered is multiplied by four to produce the stack size in bytes.

-gw num Sets the interval for background processing. At each interval, the
engine carries out one I/O operation. The default setting is 500 (half a
second).

-gx Disables dual threading. This option is available for the Windows 95,
Windows NT, OS/2, and NetWare versions.

819

The database engine

820

-m Truncate (delete) the transaction log when a checkpoint is done, either
at shutdown or as a result of a checkpoint scheduled by the database engine.
This provides a way to automatically limit the growth of the transaction log.
Checkpoint frequency is still controlled by the CHECKPOINT_TIME and
RECOVERY_TIME options (also definable on the command line).

The -m option is useful where high volume transactions requiring fast
response times are being processed, and the contents of the transaction log
are not being relied upon for recovery or replication. When this option is
selected, there is no protection provided against media failure on the device
containing the database files.

To avoid database file fragmentation, it is recommended that where this
option is used, the transaction log be placed on a separate device or partition
from the database itself.

Replicated databases
Do not use the -m option with databases that are being replicated as
replication inherently relies on transaction log information.

-n name Set the name of the database server. By default, the database
server receives the name of the database file with the path and extension
removed. For example, if the server is started on
C:\SQLANY50\SADEMO.DB and no -n switch is specified, then the name
of the server will be sademo.

The server name can be used on the connect statement to specify to which
server you wish to connect. In all environments, there is always a default
database server that will be used if no server name is specified provided at
least one database server or SQL Anywhere Client (DBCLIENT) is running
on the computer.

-q Operate quietly. Suppress all output.

-ta seconds For Windows 3.x, Windows NT, and Windows 95 only. The
database engine periodically scans the connection list and disconnects any
connections associated with terminated applications. The scan period can be
controlled using the -ta switch, and has a default value of 30 seconds.
Setting the value to zero prevents scanning.

-u Files are opened using the operating system disk cache in addition to
the database cache. This option applies to the Windows 95 and Windows
NT database servers only. While the operating system disk cache may
improve performance in some cases, in general better performance is
obtained without this switch, using the database cache only.

Chapter 37 SQL Anywhere Components

Recovery switches

v Cause the database engine to record in the appropriate transaction log
the previous values of each of the columns whenever a table row is updated
or deleted. By default, the engine will only record enough information to
uniquely identify the row (primary key values or values from a not null
unique index). This switch is useful for working on a copy of a database file.

This option does not apply to the runtime database engine, which does not
support transaction logs, or database files that are not using a transaction
log.

-y Runs database engine as a Windows 95 service. By registering the
database engine as a Windows 95 service it continues to operate whether as
users log on or off and shutdown commands are ignored.

&> The database engine can also be run as an NT service. For more
information, see the chapter "Running Programs as Services".

-a log-file Apply the named transaction log. This is used to recover from
media failure on the database file. When this option is specified, the
database server will apply the log and then terminate—it will not continue
to run.

This option does not apply to the runtime database engine, which does not
support transaction logs, or database files that are not using a transaction
log.

& For more information on recovery from media failure, see the chapter
"Backup and Data Recovery".

-f This option is used for recovery: either to force the database server to
start after the transaction log has been lost, or to force the database server to
start using a transaction log it would otherwise not find.

If there is no transaction log, the database server carries out a checkpoint
recovery of the database and then terminates—it does not continue to run.
You can then restart the database server without the -f option for normal
operation.

If there is a transaction log in the current directory, the database server
carries out a checkpoint recovery, and a recovery using the transaction log,
and then terminates—it does not continue to run. You can then restart the
database server without the -f option for normal operation.

This option does not apply to the runtime database engine, which does not
support transaction logs.

821

The database engine

Database switches

822

&~ For more information on recovery, see the chapter "Backup and Data
Recovery".

-m Truncate (delete) the transaction log when a checkpoint is done, either
at shutdown or as a result of a checkpoint scheduled by the engine. This
provides a way to automatically limit the growth of the transaction log.
Checkpoint frequency is still controlled by the CHECKPOINT_TIME and
RECOVERY_TIME options (also definable on the command line).

The -m option is useful where high volume transactions requiring fast
response times are being processed, and the contents of the transaction log
are not being relied upon for recovery or replication. When this option is
selected, there is no protection provided against media failure on the device
containing the database files.

To avoid database file fragmentation, it is recommended that where this
option is used, the transaction log be placed on a separate device or partition
from the database itself.

This switch is the same as the -m engine switch, but applies only to the
database identified by the database-file command-line variable.

Replicated databases :
Do not use the -m option with databases that are being replicated as
replication inherently relies on transaction log information.

-n name Set the name of the database. Both database servers and
databases can be named. Since a database server can load several databases,
the database name is used to distinguish the different databases.

By default, the database receives the name of the file with the path and
extension removed. For example, if the server is started on
C:\SQLANY50\SADEMO.DB and no -n switch is specified, then the name
of the database is sademo.

-v Causes the database engine to record in the transaction log the previous
values of each of the columns whenever a row of the specified database is
updated or deleted. By default, the engine will only record enough
information to uniquely identify the row (primary key values or values from
a not null unique index). This switch is useful for working on a copy of a
database file.

This option does not apply to the runtime database engine, which does not
support transaction logs, or database files that are not using a transaction
log.

Chapter 37 SQL Anywhere Components

The backup, initialization, unload, and validation utilities automatically
load the database engine if it has not been previously loaded. The SQL
Anywhere Client (DBCLIENT) can also be started automatically in this
way. See "Registry entries and environment variables" on page 810 and the
respective commands for more details. If the database engine (or client) is
started automatically, it will be unloaded automatically when the software is
finished executing.

823

The Backup utility

The Backup utility

With the Backup utility, you can back up running databases, database files,
transaction logs, and write files.

You can access the Backup utility in the following ways:

¢ From Sybase Central, for interactive use under Windows 95 or NT.
¢ From the ISQL Database Tools window.

¢ From the ISQL DBTOOL statement.
¢

From the system command line, using the DBBACKUP utility. This is
useful for incorporating backup procedures into batch or command
files.

The Backup utility makes a backup copy of all the files making up a single
database. A simple database consists of two files: the main database file and
the transaction log. More complicated databases can store tables in multiple
files. Each file is a separate dbspace. All backup filenames are the same as
the database filenames.

Running the Backup utility on a running database is equivalent to copying
the database files when the database is not running. It is provided to allow a
database to be backed up while other applications or users are using the

database.
&~ For more For a description of suggested backup procedures, see the chapter "Backup
information and Data Recovery".

Backing up a database from Sybase Central

< To back up a running database:
1 Connect to the database.

2 Right-click the database and click Backup in the popup menu. The
Backup Wizard is displayed.

3 Follow the instructions in the Wizard.

< To back up a database file or a running database:
1 Open the Database Utilities folder in the left panel.
2 Double-click Backup Database in the right panel.

824

Chapter 37 SQL Anywhere Components

3 Follow the instructions in the wizard.

& For full information on backing up a database from Sybase Central, see
the Sybase Central online Help. For more information about options, see
"Backup utility options" on page 826.

Backing up a database from the ISQL Database Tools window

< To use the Backup utility from the ISQL Database Tools window:

1 Select Database Tools from the Window menu.

2 Click Backup Database Files on the Tools list.

3 Enter a user ID and password to use when connecting to the database.
4

For a running database, enter a database name and server name (if
more than one is running). For a database file, enter the filename (with
path) and optionally a start line to specify command-line switches for
the database engine or SQL Anywhere Client.

5 Click Backup, and select from the options displayed in the dialog.
6 Click OK to back up the database.

Backing up a database using the DBTOOL statement

Syntax

Example

The syntax to access the Backup utility from the ISQL DBTOOL statement
is as follows:

DBTOOL BACKUP TO directory
[DBFILE] [WRITE FILE][[TRANSACTION] LOG]
| [ALL FILES]
| [RENAME [TRANSACTION] LOG]
| [TRUNCATE [TRANSACTION] LOG]
[NOCONFIRM] USING connection-string

The following statement connects to and backs up the sample database, to
directory C:\TEMP.

DBTOOL BACKUP TO 'c:\temp' DBFILE

USING 'dbf=c:\sqglany50\sademo.db;uid=dba;pwd=sqgl"’

825

The Backup utility

The DBBACKUP command-line utility

Syntax dbbackup [switches] directory
Windows 3.x dbbackw [switches] directory
syntax
Switch Description
-c¢ "keyword=value; ..." Supply database connection parameters
-d Only back up main database file
-k Change backup transaction log naming
convention
-1file Live backup of transaction log to file
-0 file Log output messages to file
-q Quiet mode—do not print messages
-r Rename and start new transaction log
-t Only back up transaction log
-W Only back up write file
-X Delete and restart transaction log
-y Replace files without confirmation

If none of the switches -d, -t, or -w are used, all database files are backed up.

&>~ For more information about the command-line switches, see "Backup
utility options", next.

Backup utility options

Connection parameters For a description of the connection parameters,
see "Database connection parameters" in the chapter "Connecting to a
Database". If the connection parameters are not specified, connection
paremeters from the SQLCONNECT environment variable are used, if set.
The user ID must have DBA authority.

For the DBBACKUP command-line utility, this is the -c command-line
switch. For example, the following statement backs up the sademo database
running on the server sample_server, connecting as user ID DBA with
password SQL:

dbbackup -c
"eng=sample_server;dbn=sademo;uid=dba;pwd=sqgl"

826

Chapter 37 SQL Anywhere Components

Backup main database only Back up the main database files only,
without backing up the transaction log file or a write file, if one exists. For
the DBBACKUP command-line utility, this is the -d command-line switch.

Change backup transaction log naming convention This option
changes the naming convention of the backup transaction log file to
YYMMDDxx.LOG, where xx is a number from 00 to 99 and YYMMDD
represents the current year, month and day. By default the name used for the
backup transaction log file is identical to the file name of the transaction log
being backed up. For the DBBACKUP command-line utility, this is the -k
command-line switch.

Live backup This option is provided to enable a secondary system to be
brought up rapidly in the event of a server crash. A live backup does not
terminate, but continues running while the server runs. It runs until the
primary server crashes. At that point it is shut down, but the backed up log
file is intact and can be used to bring a secondary system up quickly. For the
DBBACKUP command-line utility, this is the -1 (lower case L) command-
line switch.

Output messages to log Sends backup messages to a named log file.
For the DBBACKUP command-line utility, this is the -o command-line
switch.

Operate quietly Do not display messages on a window. For the
DBBACKUP command-line utility, this is the -q command-line switch.
This option is not available from other environments.

Rename and start new transaction log This option forces a checkpoint
and the following three steps to occur:

¢ Step1 A copy is made of the current working transaction log file and
saved to the directory specified in the command line.

¢ Step2 The current transaction log remains in its current directory,
but is renamed using the format YYMMDDuxx.LOG, where xx is a
number from 00 to 99 and YYMMDD represents the current year,
month and day. This file is then no longer the current transaction log.

¢ Step3 A new transaction log file is generated that contains no
transactions. It is given the name of the file previously considered the
current transaction log and is used by the database engine as the current
transaction log.

For the DBBACKUP command-line utility, this is the -r command-line
switch.

827

The Backup utility

828

Back up the transaction log file only This can be used as an
incremental backup since the transaction log can be applied to the most
recently backed up copy of the database file(s). For the DBBACKUP
command-line utility, this is the -t command-line switch.

Back up the database write file only See DBWRITE for a description
of database write files. For the DBBACKUP command-line utility, this is
the -w command-line switch.

Delete and restart the transaction log With this option, the existing
transaction log is backed up, then the original is deleted and a new
transaction log is started with the same name. This option causes the backup
to wait for a point when all transactions from all connections are committed.
For the DBBACKUP command-line utility, this is the -x command-line
switch.

Operate without confirming actions Without this option, you are
prompted to confirm the creation of the backup directory or the replacement
of a previous backup file in the directory. For the DBBACKUP command-
line utility, this is the -y command-line switch.

Chapter 37 SQL Anywhere Components

The Collation utility

With the Collation utility, you can extract a collation (sorting sequence)
from the SYS.SYSCOLLATION system table of a database into a file
suitable for creating a database using a custom collation.

The file produced by the Collation utility can be modified and used with
Sybase Central or the -z option of DBINIT to create a new database with a
custom collation.

Ensure that the label is changed on the line that looks like:

Collation label (name)
Otherwise, the collation cannot be used to create a database.

If you wish to create a custom collation but have not yet created a database,
you should extract a collation from the sample database provided with SQL
Anywhere.

& For more information on custom collating sequences, see the chapter
"Database Collations".

You can access the Collation utility in the following ways:
¢ From the ISQL Database Tools window.
¢ From the ISQL DBTOOL statement.

¢ From the system command line, using the DBCOLLAT command-line
utility.

Extracting a collation in the ISQL Database Tools window

% To use the Collation utility from the ISQL Database Tools window:
1 Select Database Tools from the Window menu.
2 Click Extract Collation from Database on the Tools list.

3 For a running database, enter a database name and server name (if
more than one is running). For a database file, enter the filename (with
path) and optionally a start line to specify command-line switches for
the database engine or SQL Anywhere Client.

4 Click Extract, and select from the options displayed in the dialog.

5 Click OK to extract the collation file from the database.

829

The Collation utility

Extracting a collation using the DBTOOL statement

Syntax The syntax to access the Collation utility from the ISQL DBTOOL
statement is as follows:
DBTOOL UNLOAD COLLATION [name] TO filename
... USING connection-string

... [EMPTY MAPPINGS] [HEX | HEXADECIMAL] [NOCONFIRM |

The DBCOLLAT command-line utility

Syntax dbcollat [switches] output-file

Windows 3.x dbcollw [switches] output-file

syntax
Switch Description
-¢ "keyword=value; ..." Supply database connection parameters
-e Include empty mappings
-0 filename Output log messages to file
-q Quiet mode — do not print messages
-X Use hex for extended characters (7F-FF)
-y Replace file without confirmation
-z col-seq Specify collating sequence label

&~ For more information about the command-line switches, see "Collation
utility options", next.

Collation utility options

Connection parameters For a description of the connection parameters,
see "Database connection parameters" in the chapter "Connecting to a
Database". If the connection parameters are not specified, connection
paremeters from the SQLCONNECT environment variable are used, if set.
The user ID must have DBA authority.

For the DBCOLLAT command-line utility, this is the -c command-line
switch. For example, the following statement extracts a collation file from
the sademo database running on the sample_server server, connecting as
user ID DBA with password SQL:

830

Chapter 37 SQL Anywhere Components

dbcollat -c
"eng=sample_server;dbn=sademo;uid=dba;pwd=sgl"
c:\sample\col

Include empty mappings Normally, collations don't specify the actual
value that a character is to sort to. Instead, each line of the collation sorts to
one position higher than the previous line. However, older collations have
gaps between some sort positions. Normally, the Collation utility skips the
gaps and writes the next line with an explicit sort-position. This option
causes the Collation utility to write empty mappings (consisting of just a
colon (3)) for each line in the gap. For the DBCOLLAT command-line
utility, this is the -e command-line switch.

Output log messages to file Redirect the log messages from the
Collation utility to a named file. For the DBCOLLAT command-line utility,
this is the -o command-line switch.

Operate quietly Do not display messages on a window. For the
DBCOLLAT command-line utility, this is the -q command-line switch. This
option is not available from other environments.

Use hexadecimal for extended characters (7F to FF) Extended
single-byte characters (whose value is greater than hex 7F) may or may not
appear correctly on your screen, depending on whether or not the code page
in use on your computer is the same as the code page being used in the
collation you are extracting. This option causes the Collation utility to write
all characters at hex 7F or above as a two-digit hexadecimal number, in the
form:

\xdd

(For example, \x80, \xFE). Normally, only characters from hex 00 to hex
1F, hex 7F and hex FF are written in hexadecimal form. For the
DBCOLLAT command-line utility, this is the -x command-line switch.

Operate without confirming actions Without this option, you are
prompted to confirm replacing an existing collation file. For the
DBCOLLAT command-line utility, this is the -y command-line switch.

Specify collating sequence label Specify the label of the collation to be
extracted. The names of the collation sequences can be found in the
collation_label column of the SYS.SYSCOLLATION table. If this option is
not specified, then the Collation utility extracts the collation being used by
the database. For the DBCOLLAT command-line utility, this is the -z
command-line switch.

831

The Compression utility

The Compression utility

With the Compression utility you can compress a database file. The
Compression utility reads the given database file and create a compressed
database file. Compressed database files are useful if disk space is limited.
Compressed databases are usually 40 to 60 per cent of their original size.
The database engine cannot update compressed database files: they must be
used in conjunction with write files.

The Compression utility does not compress files other than the main
database file.

You can access the Compression utility in the following ways:

¢ From Sybase Central, for interactive use under Windows 95 or NT.
¢ From the ISQL Database Tools window.

¢ From the ISQL DBTOOL statement.
.

From the system command line, using the DBSHRINK command-line
utility. This is useful for incorporating into batch or command files.

Compressing a database in Sybase Central

< To compress a database file:
1 Open the Database Utilities folder in the left panel.

2 Double-click Compress Database in the right panel. The Compress
Database Wizard is displayed.

3 Follow the instructions in the Wizard.

& For full information on compressing a database in Sybase Central, see
the Sybase Central online Help.

Compressing a database from the ISQL Database Tools window

< To use the Compression utility from the ISQL Database Tools
window:

1 Select Database Tools from the Window menu.

2 Click Compress Database on the Tools list.

832

Chapter 37 SQL Anywhere Components

Enter the database filename (with path).

4 Click Compress, and enter a filename to use for the uncompressed
database.

5 Click OK to compress the selected database file.

Compressing a database using the DBTOOL statement

Syntax

The syntax for the Compression utility from the ISQL DBTOOL statement
is as follows:

DBTOOL COMPRESS DATABASE filename TO filename]

The DBSHRINK command-line utility

Syntax

Windows 3.x
syntax

dbshrink [switches] database-file [compressed-database-file]

dbshrinw [switches] database-file [compressed-database-file]

Switch | Description
-q Quiet mode—do not print messages
-y Erase existing output file without confirmation

DBSHRINK reads the given database file and create a compressed database
file. The compressed filename defaults to the same name as the first with an
extension of CDB. The output filename (with extension) must not have the
same name as the input filename (with extension).

& For more information about the command-line switches, see
"Compression utility options", next.

Compression utility options

Operate quietly Do not display messages on a window. For the
DBSHRINK command-line utility, this is the -q command-line switch. This
option is not available from other environments.

Operate without confirming actions Without this option, you are
prompted to confirm the replacement of an existing database file. For the
DBSHRINK command-line utility, this is the -y command-line switch.

833

The Erase utility

The Erase utility

With the Erase utility, you can erase a database file or write file and its
associated transaction log, or you can erase a transaction log file or
transaction log mirror file. All SQL Anywhere database files, write files,
and transaction log files are marked read-only to prevent accidental damage
to the database or accidental deletion of the database files. Deletion of a
database file that references other dbspaces does not automatically delete the
dbspace files.

If you erase a database file or write file, the associated transaction log and
transaction log mirror are also deleted. If you erase a transaction log for a

database that also maintains a transaction log mirror, the mirror is not
deleted.

You can access the Erase utility in the following ways:

¢ From Sybase Central, for interactive use under Windows 95 or NT.
¢ From the ISQL Database Tools window.

¢ From the ISQL DBTOOL statement.
*

From the system command line, using the DBERASE command-line
utility. This is useful for incorporating into batch or command files.

Erasing a database from Sybase Central

% To erase a database file:
1 Open the Database Utilities folder in the left panel.

2 Double-click Erase Database in the right panel. The Erase a Database
Wizard is displayed.

3 Follow the instructions in the Wizard.

& For full information on erasing a database from Sybase Central, see the
Sybase Central online Help.

Erasing a database from the ISQL Database Tools window

% To use the Erase utility from the ISQL Database Tools window:

1 Select Database Tools from the Window menu.

834

Chapter 37 SQL Anywhere Components

Click Erase Database or Write File on the Tools list.
Enter the filename (with path).

Click Erase, and select from the options displayed in the dialog.

whn W N

Click OK to erase the selected files.

Erasing a database using the DBTOOL statement

Syntax The syntax for the Erase utility from the ISQL DBTOOL statement is as
follows:

drop database database-file [noconfirm]

The database-file may be a database file, write file, or transaction log file.
The full filename must be specified, including extension. If a database file
or write file is specified, the associated transaction log file (and mirror, if
one is maintained) is also erased.

Example The following statement erases the database file C:\TEMP.DB and its
associated transaction log file, prompting to confirm deletion.

DBTOOL DROP DATABASE 'c:\temp.db'

The DBERASE command-line utility

Syntax dberase [switches] database-file
Windows 3.x dberasew [switches] database-file
syntax
Switch | Description
-0 Output log messages to file
-q Operate quietly—do not print messages
-y Erase files without confirmation

The database-file may be a database file, write file, or transaction log file.
The full filename must be specified, including extension. If a database file
or write file is specified, the associated transaction log file (and mirror, if
one is maintained) is also erased.

&> For more information about the command-line switches, see "Erase
utility options", next.

835

The Erase utility

Erase utility options

836

Output log messages to file Redirect log messages to the named file.
For the DBERASE command-line utility, this is the -o option.

Operate quietly Do not display messages on a window For the
DBERASE command-line utility, this is the -q command-line switch. This
option is not available from other environments.

Operate without confirming actions Without this option, you are
prompted to confirm the deletion of each file. For the DBERASE command-
line utility, this is the -y command-line switch.

Chapter 37 SQL Anywhere Components

The Information utility

With the Information utility you can display information about a database
file or write file. The database you wish to examine should not be running
when you run the Information utility. The utility indicates when the
database was created, the name of any transaction log file or log mirror that
is maintained, the page size and other information. Optionally, it can also
provide table usage statistics and details.

You can access the Information utility in the following ways:
¢ From the ISQL Database Tools window.
¢ From the ISQL DBTOOL statement.

¢ From the system command line, using the DBINFO command-line
utility.

Obtaining database information in the ISQL Database Tools window

o use the Information utility from the ISQL Database Tools window:

Select Database Tools from the Window menu.

Enter the database filename (with path).

Click Display to show information about the database.

T
1
2 Click Database Information on the Tools list.
3
4
5

Click Page Usage to show information on database pages.

Obtaining database information using the DBTOOL statement

Syntax

The syntax for the Information utility from the ISQL DBTOOL statement is
as follows:

DBTOOL DBINFO DATABASE database-file TO output-file
[[WITH] PAGE USAGE]
USING connection-string

A database or write filename, with path, must be supplied. The database you
wish to examine should not be running when you run the Information
utility.

837

The Information utility

Example

The following statement gets information about the sample database and
puts it in the file CA\TEMP.TXT.

DBTOOL DBINFO DATABASE 'c:\sglany50\sademo.db’
TO 'c:\temp.txt'

WITH PAGE USAGE

USING 'uid=dba;pwd=sqgl’

The DBINFO command-line utility

Syntax

Windows 3.x
syntax

dbinfo [switches] filename

dbinfow [switches] filename

Switch | Description

-0 filename Output messages to file

-q Suppress any messages

-u Output page usage statistics

&~ For more information about the command-line switches, see
"Information utility options", next.

Information utility options

838

Database file name A database or write file name, with path, must be
supplied. The database you wish to examine should not be running when
you run the Information utility.

Output log messages to file Redirect log messages to the named file.
For the DBINFO command-line utility, this is the -o command-line switch.

Operate quietly Do not display the information. The return code may
still provide useful information (see "Software component return codes" on
page 813). For the DBINFO command-line utility, this is the -q command-
line switch. This option is only available from the command-line utility.

Page usage statistics Information about the usage and size of all tables,
including system and user-defined tables, is available as an option by using
the -u command-line switch.

Chapter 37 SQL Anywhere Components

The Initialization utility

With the Initialization utility you can initialize (create) a database. A
number of database attributes are specified at initialization and cannot be
changed later except by unloading, reinitializing, and rebuilding the entire
database:

¢ Case sensitivity or insensitivity
Storage as an encrypted file

.
¢ Treatment of trailing blanks in comparisons
¢ The page size

*

The collation sequence used

In addition, the choice of whether to use a transaction log and a transaction
log mirror is made at initialization. This choice can be changed later using
the transaction log utility.

You can access the Initialization utility in the following ways:

¢ From Sybase Central, for interactive use under Windows 95 or NT.
¢ . From the ISQL Database Tools window.

¢ From the ISQL DBTOOL statement.
*

From the system command line, using the DBINIT command-line
utility. This is useful for incorporating into batch or command files.

The standalone database engine is required by the initialization utility
during the initialization process.

Creating a database in Sybase Central

% To create a database:
1 Open the Database Utilities folder in the left panel.

2 Double-click Create Database in the right panel. The Database Creation
Wizard is displayed.

3 Follow the instructions in the Wizard.

&> For full information on creating a database in Sybase Central, see the
Sybase Central online Help. '

839

The Initialization utility

Creating a database from the ISQL Database Tools window

< To use the Initialization utility from the ISQL Database Tools window:
1 Select Database Tools from the Window menu.

Click Create Database on the Tools list.

Enter the database filename (with path).

Click Create, and select from the options displayed in the dialog.

wn AW

Click OK to create the database.

Creating a database using the DBTOOL statement from within ISQL
Syntax The syntax for the Initialization utility from the ISQL DBTOOL statement
is as follows:
- DBTOOL CREATE DATABASE filename
|[NO [TRANSACTION]LOG] |
| [[TRANSACTION] LOG TO filename] |
| [IGNORE CASE] I
| [RESPECT CASE] |
[PAGE SIZE n] [COLLATION name |
[ENCRYPT] [TRAILING SPACES |

The DBINIT command-line utility

Syntax dbinit [switches] new-database-file
Windows 3.x dbinitw [switches] new-database-file
syntax
Switch Description
-b Blank padding of strings for comparisons
-c Case sensitivity for all string comparisons
-e Encrypt database
-g user User name as replacement for dbo
-k Omit Watcom SQL compatibility views SYS.SYSCOLUMNS
and SYS.SYSINDEXES

840

Chapter 37 SQL Anywhere Components

Switch Description

-1 List available collating sequences

-m file-name | Use a transaction log mirror (default is no mirror)
-n No transaction log

-0 filename Output messages to file

-p page-size | Set page size

-q Quiet mode—do not print messages

-t log-name Transaction log filename (default is database name with LOG
extension)

-z col-seq Collation sequence used for comparisons

For example, the database TEST.DB can be created with 1024 byte pages as
follows:

dbinit -p 1024 test.db

&~ For more information about the command-line switches, see
"Initialization utility options", next.

Initialization utility options

Ignore trailing blanks Trailing blanks are ignored for comparison
purposes, and embedded SQL programs pad strings fetched into character
arrays. For example, the two strings

"Smith'

'Smith '
would be treated as equal in a database created with trailing blanks ignored.

This option is provided for compatibility with the ISO/ANSI SQL standard,
which is to ignore trailing blanks in comparisons. The default is that blanks
are significant for comparisons, which was the only behavior supported in
releases up to Watcom SQL 3.0. For the DBINIT command-line utility, this
is the -b command-line switch.

Case sensitivity for all string comparisons For databases created with
this option, all values are considered to be case sensitive in comparisons and
string operations.

841

The Initialization utility

842

This option is provided for compatibility with the ISO/ANSI SQL standard.
The default is that all comparisons are case insensitive, which was the only
behavior supported up to release Watcom SQL 3.0. For the DBINIT
command-line utility, this is the -c command-line switch.

User ID and password

All databases are created with at least one user ID, DBA, with password
SQL. If you specify create a database requiring case-sensitive
comparisons, the DBA user ID and its password must be entered in
uppercase.

Encrypt database Encryption makes it more difficult for someone to
decipher the data in your database by using a disk utility to look at the file.
File compaction utilities are not able to compress encrypted database files as
much as unencrypted ones. For the DBINIT command-line utility, this is the
-e command-line switch.

User ID for dbo user SQL Anywhere contains a set of system views that
mimic the system tables of Sybase SQL Server. By default, the owner of
these views is the user ID dbo, which is the same as the owner of the SQL
Server system tables. If you already have a user ID named dbo, or you wish
to use that user ID for other purposes, this option allows you to provide an
alternative user ID for the owner of the SQL Server-like system views. For
the DBINIT command-line utility, this is the -g command-line switch.

Omit Watcom SQL compatibility views By default, the DBINIT
command-line utility generates the views SYS.SYSCOLUMNS and
SYS.SYSINDEXES for compatibility with system tables available in
Watcom SQL. These views will conflict with the Sybase SQL Server
compatibility views dbo.syscolumns and dbo.sysindexes if the -c case
sensitivity command-line switch is not used. The -k command-line switch
causes DBINIT to omit the generation of Watcom SQL compatibility views.

Use a transaction log mirror A transaction log mirror is an identical
copy of a transaction log, usually maintained on a separate device, for
greater protection of your data. By default, SQL Anywhere does not use a
mirrored transaction log. If you do wish to use a transaction log mirror, this
option allows you to provide a filename. For the DBINIT command-line
utility, this is the -m command-line switch.

Do not use a transaction log Creating a database without a transaction
log is more economical on disk space. The transaction log is required for
data replication and provides extra security for database information in case
of media failure or system failure. For the DBINIT command-line utility,
this is the -n command-line switch.

Chapter 37 SQL Anywhere Components

Page size The page size for a SQL Anywhere database can be 512, 1024,
2048 or 4096 bytes, with 1024 being the default. Other values for the size
will be changed to the next larger size. Large databases usually benefit from
a larger page size. For the DBINIT command-line utility, this is the -p
command-line switch.

Output log messages to file Redirect log messages to the named file.
For the DBINIT command-line utility, this is the -o command-line switch.

Operate quietly Do not display messages on a window. For the DBINIT
command-line utility, this is the -q command-line switch. This option is not
available from other environments.

Set the transaction log filename The transaction log is a file where the
database engine logs all changes made by all users no matter what
application system is being used. The transaction log plays a key role in
backup and recovery (see "The transaction log" in the chapter "Backup and
Data Recovery"), and in data replication. If the filename has no path, itis
placed in the same directory as the database file. For the DBINIT command-
line utility, this is the -t command-line switch. If you run DBINIT without
specifying -t or -n, a transaction log is created with the same filename as the
database file, but with extension LOG.

Collating sequence or collation filename The collation sequence is
used for all string comparisons in the database.

The database is created with all collations listed in SYS.SYSCOLLATION.

If you want to use a custom collation, then you should use the Collation
utility to extract the closest collation from the database, then modify the
collation file and use the Initialization utility to specify the new collation. It
is important to change the collation label in the custom collation file,
otherwise the Initialization utility prevents the insertion of the new
collation, since it will be a duplicate label.

& For more information on custom collating sequences, see the chapter
"Database Collations".

In order to change the collation that an existing database is using, it is
necessary to unload the database, create a new database using the
appropriate collation, then reload the database.

843

The Initialization utility

For the DBINIT command-line utility, this is the -z command-line switch. If
-z is specified and names one of the collations then that collation will be
used by the database. If -z is specified but does not name one of the
collations, then it is assumed that the name is a filename, and the file will
be opened and the collation will be parsed from the file. The specified
collation will then be used by the database. If -z is not specified, then the
default collation is used. Normal ASCII (binary) ordering is used for the
lower 128 characters. For the upper 128 characters (also called the extended
characters), characters which are accented forms of a letter in the lower 128
are sorted to the same position as the unaccented form. The determination
of whether or not an extended character is a letter is based upon code page
850 (multilingual code page).

The following table identifies the available collating sequence labels. All
collating sequences except EBCDIC do not affect the normal ASCII
character set.

Label Explanation

437EBCDIC (Code Page 437, EBCDIC)
437LATIN1 (Code Page 437, Latin 1)

437ESP (Code Page 437, Spanish)
437SVE (Code Page 437, Swedish/Finnish)
850CYR (Code Page 850, Cyrillic)
850DAN (Code Page 850, Danish)

850ELL (Code Page 850, Greek)

850ESP (Code Page 850, Spanish)

850ISL (Code Page 850, Icelandic)
850LATIN1 (Code Page 850, Latin 1)
850LATIN2 (Code Page 850, Latin 2)
850NOR (Code Page 850, Norwegian)
850RUS (Code Page 850, Russian)
850SVE (Code Page 850, Swedish/Finnish)
850TRK (Code Page 850, Turkish)
852LATIN2 (Code Page 852, Latin 2)

852CYR (Code Page 852, Cyrillic)
855CYR (Code Page 855, Cyrillic)

844

Chapter 37 SQL Anywhere Components

Label Explanation

856HEB (Code Page 856, Hebrew)

857TRK (Code Page 857, Turkish)

860LATIN1 (Code Page 860, Latin 1)

8611ISL (Code Page 861, Icelandic)

862HEB (Code Page 862, Hebrew)

863LATIN1 (Code Page 863, Latin 1)

865NOR (Code Page 865, Norwegian)

866RUS (Code Page 866, Russian)

869ELL (Code Page 869, Greek)

SJIS (Japanese Shift-JIS Encoding)

EUC_JAPAN (Japanese EUC JIS X 0208-1990 and JIS X 0212-1990
encoding)

EUC_CHINA (Chinese GB 2312-80 Encoding)

EUC_TAIWAN | (Taiwanese Big 5 Encoding)

EUC_KOREA (Korean KS C 5601-1992 Encoding)

UTF8 (UCS-4 Transformation Format)

List the available collating sequences Running the DBINIT
command-line utility with the -1 (L) option displays a list of available
collating sequences and then stops. No database is created. The list of
available collating sequences is automatically presented in Sybase Central
and in the ISQL Database Tools window.

845

The ISQL utility

The ISQL utility

Syntax

Windows 3.x
syntax

See also

Description

846

isql [switches] [isql-command]
rtsql [switches] [isql-command]
isqlw [switches] [isql-command]

rtsqlw [switches] [isql-command]

Switch Description

-b Do not print banner

-c "keyword=value; ..." Supply database connection parameters

-k Close window when finished (RTSQL only)
-q Quiet mode—no windows or messages

-V Verbose—output information on commands
-X Syntax check only—no commands executed

"The database engine" on page 814

ISQL provides the user with an interactive environment for database
browsing and for sending SQL statements to SQL Anywhere.

ISQL allows you to type SQL commands, or run ISQL command files. It
also provides feedback about the number of rows affected, the time required
for each command, the execution plan of queries, and any error messages.

If isql-command is specified, then ISQL executes the command. The most
common form uses the READ statement to execute an ISQL command file
in batch mode. If no isql-command is specified, then ISQL enters the
interactive mode where you can type a command into a command window.

The Windows 3.x executable name is ISQLW. You can set up Program
Manager icons to start ISQLW with the same command line syntax as
specified above.

RTSQL and RTSQLW are runtime SQL command processors. These
programs are included in the SQL Anywhere Runtime System for Windows
3.x, 95, or NT, OS/2, or DOS. They are like ISQL except there is no
interactive part; they can only run command files. By including RTSQL
commands, SQL command files can be run from operating system batch or
command files. RTSQL automatically loads the database engine if it is not
already loaded. It unloads the database engine on exit. The command line
switches are the same as those of ISQL..

Chapter 37 SQL Anywhere Components

Switches

-b Do not print the identification banner when ISQL starts up.

-c "keyword=value; ..." Specify connection parameters. See "Database
connection parameters" in the chapter "Connecting to a Database" for a
description of the connection parameters. If this option is not specified, the
environment variable SQLCONNECT is used. If required connection
parameters are not specified, then you are presented with a dialog to enter
the connection parameters.

-k Close the window when RTSQL is finished. This switch applies only to
RTSQL in Windows 3.x, Windows 95, and Windows NT.

-q Operate quietly. ISQL does not display any information on the screen.
This is only useful if a command or command file is executed when starting
ISQL.

-v Verbose output. Information about each command is displayed as it is
executed (RTSQL only).

-X Scan commands but do not execute them. This is useful for checking
long command files for syntax errors.

Commands available in ISQL

1ISQL Commands

ISQL commands are broken into the following groups:

¢ Standard SQL statements that are part of the Watcom-SQL language.
These commands are further broken into two groups, the data
manipulation commands and the data definition commands.

¢ Commands that are particular to ISQL and manipulate the ISQL
environment.

¢ Simple commands that manipulate the data window.

CONFIGURE Statement Activate the ISQL configuration window for
displaying and changing ISQL options

CONNECT Statement Reconnect to the database engine with a different
user ID and password

DBTOOL Statement Invoke one of the database tools
DISCONNECT Statement Disconnect from the database engine

EXIT Statement Leave ISQL

847

The ISQL utility

ISQL data window
manipulation
commands

& For more
information

HELP Statement Enter the online Help facility

INPUT Statement Do mass input into database tables

OUTPUT Statement Output the current query results to a file
PARAMETERS Statement Specify the parameters to a command file
QUIT Statement Leave ISQL

READ Statement Execute ISQL command files

SET CONNECTION Statement Change the active database connection
SET OPTION Statement Set options that control the ISQL environment

SYSTEM Statement Executes an operating system command (not
available in Windows 3.x).

The data window manipulation commands are as follows (these commands
are not described in the command summary section):

CLEAR Statement Clear the data window

DOWN [n] Move the current query results down n lines. The default is
one line.

UP [n] Move the current query results up n lines. The default is one line.

For detailed descriptions of SQL statements and ISQL commands, see the
chapter "Watcom-SQL Language Reference".

Starting ISQL from Sybase Central

848

You can start ISQL from Sybase Central in the following ways:
¢ Right-click a database, and select Open ISQL from the popup menu.

¢ Right-click a table, and select View Data from the popup menu. ISQL
opens with the data in the table displayed in the Data window.

¢ Right-click a stored procedure, and select Test from the popup menu.
ISQL opens with a test script in the Command window.

Chapter 37 SQL Anywhere Components

The Log Translation utility

With the Log Translation utility you can translate a transaction log into a
SQL command file.

You can access the Log Translation utility in the following ways:

¢

¢
*
.

From Sybase Central, for interactive use under Windows 95 or NT.
From the ISQL Database Tools window.
From the ISQL DBTOOL statement.

From the system command line, using the DBTRAN command-line
utility. This is useful for incorporating into batch or command files.

Translating a transaction log in Sybase Central

+ To translate a transaction log into a command file:

1
2

Open the Database Utilities folder in the left panel.

Double-click Translate Log in the right panel. The Translate Log
Wizard is displayed

Follow the instructions in the Wizard.

Translating a transaction log from the ISQL Database Tools window

% To use the Log Translation utility from the ISQL Database Tools
window:

1

[V N]

Select Database Tools from the Window menu.
Click Translate Transaction Log to SQL on the Tools list.
Enter the transaction log filename (with path).
Click Translate, and select from the options in the dialog.

Click OK to translate the selected transaction log file to a SQL
command file.

849

The Log Translation utility

Translating a transaction log using the DBTOOL statement

Syntax

The syntax for the Log Translation utility from the ISQL DBTOOL
statement is as follows:

DBTOOL TRANSLATE [TRANSACTION] LOG FROM /ogname
[TO sgqffile] [WITH ROLLBACKS]
I[USERS ut, u2, ..., unl]l
| [EXCLUDE USERS uf, u2, ..., un] I
[LAST CHECKPOINT] [ANSI] [NOCONFIRM]

The DBTRAN command-line utility

Syntax

Windows 3.x
syntax

850

dbtran [switches] transaction-log [sql-log]

dbtranw [switches] transaction-log [sql-log]

Switch Description

-a Include rollback transactions in output

-f Output from most recent transaction

-j date/time Output from checkpoint prior to given date

-r Remove uncommitted transactions (default)

-S Produce ANSI standard SQL UPDATE transactions
-t Include trigger-generated transactions in output

-u userid,... Translate transactions for listed users

-X userid,... Exclude transactions for listed users

-y Replace file without confirmation

-Z

Include trigger-generated transactions as comments

The sql-log filename defaults to the transaction log name with the extension

SQL.

When the DBTRAN command-line utility is run, it displays the earliest log
offset contained in the transaction log being translated. This can be an
effective method for determining the order in which multiple log files where

generated.

Chapter 37 SQL Anywhere Components

&~ For more information about log offset numbers please see "The SQL
Remote message tracking system" in the chapter "SQL Remote
Administration"

& For more information about the command-line switches, see "Log
translation utility options", next.

Log translation utility options

Include uncommitted transactions The transaction log contains any
changes made before the most recent COMMIT by ANY transaction.
Changes made after the most recent commit are not present in the
transaction log. For the DBTRAN command-line utility, this is the -a
command-line switch.

Translate from last checkpoint only Only those transactions completed
since the last checkpoint are translated. For the DBTRAN command-line
utility, this is the -f command-line switch.

Output from checkpoint prior to given date Only transactions from the
most recent checkpoint prior to the given date and/or time are translated.
The user-provided argument can be a date, time or date and time enclosed
in quotes. If the time is omitted, the time is assumed to be the beginning of
the day of the given date. If the date is omitted, the current day is assumed.
The following is an acceptable format for the date and time: "YY/MMM/DD
HH:MM". For the DBTRAN command-line utility, this is the -j date/time
command-line switch.

Do not include uncommitted transactions Remove any transactions
that were not committed For the DBTRAN command-line utility, this is the
-r command-line switch, and the default operation.

Generate ANSI standard SQL UPDATE For cases where there is no
primary key or unique index on a table, the Translation utility generates
UPDATE statements with a non-standard FIRST keyword, in case of
duplicate rows. The ANSI standard UPDATE flag does not output this
keyword. For the DBTRAN command-line utility, this is the -s command-
line switch.

851

The Log Translation utility

852

Include transactions generated by triggers By default, actions carried
out by triggers are not included in the command file. If the matching trigger
is in place in the database, then when the command file is run against the
database, the trigger will carry out the actions automatically. Trigger actions
should be included in the case that the matching trigger does not exist in the
database against which the command file is to be run. For the DBTRAN
command-line utility, this is the -t command-line switch.

Translate transactions for listed users only For the DBTRAN
command-line utility, this is the -u command-line switch.

Translate transactions except for listed users For the DBTRAN
command-line utility, this is the -x command-line switch.

Operate without confirming actions Without this option, you are
prompted to confirm the replacement of an existing command file. For the
DBTRAN command-line utility, this is the -y command-line switch.

Include transactions generated by triggers as comments only
Transactions generated by triggers will be included only as comments in the
output file. For the DBTRAN command-line utility, this is the -z command-
line switch.

Chapter 37 SQL Anywhere Components

The Open Server Gateway

Syntax

See also

Description

Switches

The SQL Anywhere Open Server enables Sybase dblib and ctlib
applications to connect to SQL. Anywhere databases.

dbos50 [switches] [open-server-name]

Switch Description

-c version Release 5.501 data type mapping compatibility
-d database-name Name of database for connections

-e engine-name Name of engine or client for connections

-0 log_file Output messages to file

-p Run in non-preemptive mode

-t Truncate the log file

-V Verbose operation (extended messages)

-w React to Warnings as Errors

The chapter "Using the Open Server Gateway"
"The Open Server Stop utility" on page 856
"The Open Server Information utility" on page 855.

The SQL Anywhere Open Server Gateway enables Sybase dblib and ctlib
applications to connect to SQL. Anywhere databases.

For SQL Anywhere databases participating in a Replication Server
installation, SQL Anywhere Open Server Gateway is required at primary
and replicate sites to enable Replication Server to connect to the database.
At a SQL Anywhere replicate site, Replication Server must connect in order
to apply changes to the database. At a SQL Anywhere primary site,
Replication Server must connect for the materialization step and if
asynchronous procedure calls are being carried out.

The default Open Server Gateway name is SQLAny.

-c version 'The mapping of data types between Open Client applications
and SQL Anywhere was modified in release 5.502. The -c switch is
provided for Open Client applications requiring the older data type mapping
behavior (available in releases 5.501 and earlier). Other forms of this switch
include: -¢ 5500, -¢ 5.501, -c¢ 5.500.

853

The Open Server Gateway

854

&~ For more information about the data type mapping of Open Server
Gateway, see "Data type mappings" in the chapter "Using the Open Server
Gateway".

-d database-name Sets the database for connections. Connections to
SQL Server are made to the server, while connections to SQL. Anywhere are
made to an individual database. The -d switch allows Open Server Gateway
to support SQL Server connection events. If no -d switch is provided, the
Open Server uses the first active database on the specified engine or client
for all connections.

-e server-name Sets the SQL Anywhere server name for connections.
Connections to SQL Server are made to the server, while connections to
SQL Anywhere are made to an individual database. The -d switch allows
Open Server Gateway to support SQL Server connection events. If no -e
switch is provided, the Open Server looks for a running engine or client and
uses the first engine or client it finds for all connections.

-o logfile Name the log file to which messages are output. The default
name for the log file is the server name with extension .WOS.

-p Run in non-preemptive mode. In non-preemptive mode the Open
Server processes commands serially rather than concurrently.

-t Truncate the log file on startup.

-v With the -v switch set, the messages sent to the log file are also sent to
the current command-line window.

Caution
The -v switch is not recommended for use in a production environment,
as it can have a significant impact on performance.

-w With the -w switch set, the Open Server reacts to warnings as if they
were errors, stopping execution. This may be useful during development,
especially if the application is to run against other Open Servers also.

Chapter 37 SQL Anywhere Components

The Open Server Information utility

Syntax

See also

Description

Switches

dbosinfo [switches]

Switch Description

-S server Open Server to return
information on

-u userid Connection username
-p password Connection password
-v Verbose operation

"The Open Server Gateway" on page 853, "The Open Server Stop utility" on
page 856.

The DBOSINFO command-line utility returns information about a Open
Server Gateway. Currently, the only information returned is the TDS
version.

-S server The Open Server to return information on. The Open Server
name is declared on the DBOS50 command line, and corresponds to an
entry in the list of Open Servers maintained by SQLEDIT .

-U userid A SQL Anywhere user ID on a database being supported by the
Open Server.

-P password The SQL Anywhere connection password corresponding to
the user ID provided in the -U command line.

-v Extra messages are sent to the window.

855

The Open Server Stop utility

The Open Server Stop utility

Syntax

See also

Description

Switches

Example

856

dbosstop [switches]

Switch Description

-S server Open Server to stop
-u userid Connection username
-p password Connection password
-q Operate quietly

-V Verbose operation

"The Open Server Gateway" on page 853, "The Open Server Information
utility" on page 855.

The DBOSSTOP command-line utility stops a Open Server Gateway.

-S server The Open Server to stop. The Open Server name is declared on
the DBOS50 command line, and corresponds to an entry in the list of Open
Servers maintained by SQLEDIT .

-U userid A SQL Anywhere user ID on a database being supported by the
Open Server Gateway.

-P password The SQL Anywhere connection password corresponding to
the user ID provided in the -U command line.

-q Operate quietly. No messages are sent to the log file.

-v Extra messages are sent to the window.

The following command stops the Open Server gateway named primeos,
using user ID DBA, and password SQL.

dbosstop -S PRIMEOS -U dba -P sgl

Chapter 37 SQL Anywhere Components

The REBUILD batch or command file

Syntax rebuild old-database new-database [dba-password]
See also DBINIT, DBUNLOAD, ISQL
Description This DOS or Windows NT batch file, OS/2 command file, or QNX script

uses DBUNLOAD to rebuild old-database into new-database. This is a
simple script, but it helps document and automate the rebuilding process.
Both database names should be specified without extensions. An extension
of DB. will automatically be added.

The dba-password must be specified if the password to the DBA user ID in
the old-database is not the initial password SQL.

REBUILD runs the DBUNLOAD, DBINIT, and ISQL commands with the
default command line options. If you need different options, you will need to
run the three steps separately.

857

The SQL Remote Database Extraction utility

The SQL Remote Database Extraction utility

Objects owned by
dbo

You can access the remote database extraction utility in the following ways:
¢ From Sybase Central, for interactive use under Windows 95 or NT.

¢ From the system command line, using the DBXTRACT command-line
utility. This is useful for incorporating into batch or command files.

By default, the extraction utility runs at isolation level zero. If you are
extracting a database from a running server, you should run it at isolation
level 3 (see "Extraction utility options" on page 860) to ensure that data in
the extracted database is consistent with data on the server. Running at
isolation level 3 may hamper others' turnaround time on the server because
of the large number of locks required. It is recommended that you run the
extraction utility when the server is not busy.

The dbo user ID owns a set of SQL Server-compatible system objects in a
SQL Anywhere database.

The Extraction utility does not unload the objects created for the dbo user ID
during database creation. Changes made to these objects, such as redefining
a system procedure, are lost when the data is unloaded. Any objects created
by the dbo user ID since the initialization of the database are unloaded by
the Extraction utility, and so these objects are preserved.

Extraction utility limitations

The extraction utility is not designed to create a flawless reload script
under all circumstances, but can produce a script which can be modified
to the user's needs. An inconsistent database could still be created, if for
example, a view referencing non-replicated tables is extracted.

Extracting a remote database in Sybase Central

858

+ To extract a remote database from a running database:

1 Connect to the database.
2 Right-click the database and click Extract Database in the popup menu.

3 Follow the instructions in the wizard.

Chapter 37 SQL Anywhere Components

< To extract a remote database from a database file or a running
database as follows::

1 Open the Database Utilities folder in the left panel.
2 Double-click Extract a Database in the right panel.

3 Follow the instructions in the wizard.

&> For full information on extracting a remote database in Sybase Central,
see the Sybase Central online Help.

The DBXTRACT command-line utility

Syntax dbxtract [switches] directory subscriber
Windows 3.x dbxtracw [switches] directory subscriber
syntax
Switch Description
-b Do not start subscriptions
-¢ "keyword=value; ..." | Supply database connection parameters
-d Unload data only
-f Extract fully qualified publications
-g .user Specify user name as replacement for dbo
-j nnn Repeated unload of view creation statements
-1.level Perform all extraction operations at specified isolation leve
-k Close window on completion
-n Extract schema definition only
-0 .file Output messages to file
-p character Escape character
-q Operate quietly: do not print messages or show windows
-r .file Specify name of generated reload ISQL
command file (default "RELOAD.SQL")
-u Unordered data
-V Verbose messages
-xf Exclude foreign keys
-Xp Exclude stored procedures

859

The SQL Remote Database Extraction utility

Description

Inconsistent
databases

-xt Exclude triggers
-XV Exclude views
-y Overwrite command file without confirmation

Running the extraction utility from Sybase Central carries out the following
tasks related to creating and synchronizing SQL Remote subscriptions:

¢ Creates a command file to build a remote database containing a copy of
the data in a specified publication.

¢ Creates the necessary SQL Remote objects, such as message types,
publisher and remote user IDs, publication and subscription, for the
remote database to receive messages from and send messages to the
consolidated database.

¢ Starts the subscription at both the consolidated and remote databases.

Extraction utility limitations

The extraction utility is not designed to create a flawless reload script
under all circumstances, but can produce a script which can be modified
to the user's needs. An inconsistent database could still be created, if for
example, a view referencing non-replicated tables is extracted.

&> For more information about the command-line switches, see
"Extraction utility options", next.

Extraction utility options

860

Do not start subscriptions automatically If this option is selected,
subscriptions at the consolidated database (for the remote database) and at
the remote database (for the consolidated database) must be started
explicitly using the START SUBSCRIPTION statement for replication to
begin. For the DBXTRACT command-line utility, this is the -b switch.

Connection parameters For a description of the connection parameters,
see "Database connection parameters" in the chapter "Connecting to a
Database". If the connection parameters are not specified, connection
paremeters from the SQLCONNECT environment variable are used, if set.
The user ID should have DBA authority to ensure that the user has
permissions on all the tables in the database.

Chapter 37 SQL Anywhere Components

For the DBXTRACT command-line utility, this is the -c command-line
switch. For example, the following statement extracts a database for remote
user ID joe_remote from the sademo database running on the sample_server
server, connecting as user ID DBA with password SQL. The data is
unloaded into the C:\UNLOAD directory.

dbxtract -c¢ "eng=sample_server;dbn=sademo;

uid=dba;pwd=sql" c:.extract joe_remote

Unload the data only If this option is selected, the schema definition is
not unloaded, and publications and subscriptions are not created at the
remote database. This option is for use when a remote database already
exists with the proper schema, and needs only to be filled with data. For the
DBXTRACT command-line utility, this is the -d switch.

Extract fully qualified publications In most cases, you do not need to
extract fully qualified publication definitions for the remote database, since
it typically replicates all rows back to the consolidated database anyway.

However, you may want fully qualified publications for multi-tier setups or
for setups where the remote database has rows that are not in the
consolidated database. For the DBXTRACT command-line utility, this is
the -f switch.

Repeated unload of view creation statements If your database
contains view definitions that are dependent on each other, you can use this
option to avoid failure in reloading the views into a database. The option
causes view creation statements to be unloaded multiple times, as specified
by the count entered. This count should be small, and should correspond to
the number of levels of view dependency. For the DBXTRACT command-
line utility, this is the -j command-line switch.

Perform extraction at a specified isolation level The default setting is
an isolation level of zero. If you are extracting a database from a running
server, you should run it at isolation level 3 (see "Extraction utility options"
on page 860) to ensure that data in the extracted database is consistent with
data on the server. Increasing the isolation level may result in large numbers
of locks being used by the extraction utility, and may restrict database use by
other users. For the DBXTRACT command-line utility, this is the -1 switch.

Unload the schema definition only With this definition, none of the
data is unloaded. The reload file contains SQL statements to build the
database structure only. You can use the SYNCHRONIZE SUBSCRIPTION
statement to load the data over the messaging system. Publications,
subscriptions, PUBLISH and SUBSCRIBE permissions are part of the
schema. For the DBXTRACT command-line utility, this is the -n switch.

861

The SQL Remote Database Extraction utility

862

Output messages to file For the DBXTRACT command-line utility,
this is the -o switch.

Escape character The default escape character (\) can be replaced by
another character using this option. For the DBXTRACT command-line
utility, this is the -p command-line switch.

Operate quietly Display no messages except errors. For the DBXTRACT
command-line utility, this is the -q command-line switch. This option is not
available from other environments.

Reload filename The default name for the reload command file is
RELOAD.SQL in the current directory. For the DBXTRACT command-line
utility, this is the -r switch.

Output the data unordered By default the data in each table is ordered
by primary key. Unloads are quicker with the -u switch, but loading the data
into the remote database is slower. For the DBXTRACT command-line
utility, this is the -u switch.

Verbose mode The name of the table being unloaded and the number of
rows unloaded are displayed. The SELECT statements being used to extract
data from tables is also displayed, which can be useful because the SELECT
statements have WHERE clauses that can lead to slow extracts, such as
when indexes have not been created. For the DBXTRACT command-line
utility, this is the -v switch.

Exclude foreign key definitions You can use this if the remote database
contains a subset of the consolidated database schema, and some foreign key
references are not present in the remote database. For the DBXTRACT
command-line utility, this is the -xf switch.

Exclude stored procedure Do not extract stored procedures from the
database. For the DBXTRACT command-line utility, this is the -xp switch.

Exclude triggers Do not extract triggers from the database. For the
DBXTRACT command-line utility, this is the -xt switch.

Exclude views Do not extract views from the database. For the
DBXTRACT command-line utility, this is the -xv switch.

Operate without confirming actions Without this option, you are
prompted to confirm the replacement of an existing command file. For the
DBXTRACT command-line utility, this is the -y switch.

Chapter 37 SQL Anywhere Components

The SQL Remote Message Agent

Syntax dbremote [switches] [directory |
Windows 3.x dbremotw [switches] [directory]
syntax
Switch Description
-a Do not apply received transactions
-b Run in batch mode
-¢c "keyword=value; ..." Supply database connection parameters
-f minutes Receive message polling frequency (default is one
minute)
-k Close window on completion
-1 length Maximum message length
-m size Maximum amount of memory to be used by

DBREMOTE for building messages.

-0 file Output messages to file
-p Do not purge messages
-r Receive only
-S Send only
-t Replicate all triggers
-u Process only backed up transactions
-v Verbose operation
-X Rename transaction log
Description The messaging agent sends and applies messages for SQL Remote
replication, and maintains the message tracking system to ensure message
delivery.

The user ID in the Message Agent command line must have either
REMOTE DBA or DBA authority.

The optional directory parameter specifies a directory in which old
transaction logs are held, so that the Message Agent has access to events
from before the current log was started.

863

The SQL Remote Message Agent

Switches

864

A database can have only one instance of the messaging agent connecting to
it at a time. However, multiple instances of the messaging agent can connect
to a single database engine or server hosting multiple databases, provided
only one messaging agent connects to one database.

& For information on REMOTE DBA authority, see "The Message
Agent and replication security" in the chapter "SQL Remote
Administration". For information on log management in SQL Remote, see
"Transaction log and backup management for SQL Remote" in the chapter
"SQL Remote Administration".

-a Process the received messages (those in the inbox) without applying
them to the database. Used together with -v (for verbose output) and -p (so
the messages are not purged), this flag can help detect problems with
incoming messages. Used without -p, this flag purges the inbox without
applying the messages, which may be useful if a subscription is being
restarted.

-b Run in batch mode. In this mode, the Message Agent processes
incoming messages, scans the transaction log once and processes outgoing
messages, and then stops.

-c "keyword=value; ..." Specify connection parameters. See "Database
connection parameters" in the chapter "Connecting to a Database" for a
description of the connection parameters. If this option is not specified, the
environment variable SQLCONNECT is used.

For example, the following statement runs DBREMOTE on a database file
named C:\SQLANY50\SADEMO.DB, connecting with user ID dba and
password sql:

dbremote -c
"uid=dba;pwd=sqgl;dbf=c:\sglany50\sademo.db"

The DBREMOTE command-line utility must be run by a user with
REMOTE DBA authority or DBA authority.

&>~ For information on REMOTE DBA authority, see "The Message
Agent and replication security" in the chapter "SQL Remote
Administration".

-f minutes Sets the frequency of incoming message checking when
DBREMOTE is used in continuous mode (not batch mode). Specifies in
minutes how often the source of messages is polled. Values greater than the
SEND EVERY option specified in the GRANT REMOTE SQL statement
cause DBREMOTE to check for incoming messages once after each send
cycle. If this value is not set, a default polling frequency of one minute is
used.

Chapter 37 SQL Anywhere Components

-k Close window on completion. This flag is valid for Windows and
Windows NT only.

-llength Specifies the maximum length of message to be sent, in bytes.
The default is 51200 (50K). Longer transactions are split into more than
one message.

-m size Specifies a maximum amount of memory to be used by
DBREMOTE for building messages. When the memory usage is exceeded,
messages are flushed (before being full). The allowed size can be specified
as n (in bytes), nK, or nM. The default is 2048K (2M).

This is provided for customers considering a single consolidated database
for thousands of remote databases.

-o file Append output to a log file. Default is to send output to the screen.
-p Process the messages without purging them.

-r Receive messages only.

-s Send messages only.

-t All trigger actions are replicated. If you do use this switch, you must
ensure that the trigger actions are not carried out twice at remote databases,
once by the trigger being fired at the remote site, and once by the explicit
application of the replicated actions from the consolidated database.

To ensure that trigger actions are not carried out twice, you can wrap an IF
CURRENT REMOTE USER IS NULL ... END IF statement around the
body of the triggers.

-u Process only transactions that have been backed up. This switch
prevents DBREMOTE from processing transactions contained in the live
transaction log. Transactions in the live, or active transaction log are not
processed until that log file is backed up. Outgoing transactions and
confirmation of incoming messages are only processed for those
transactions that are not in the live transaction log.

-v Verbose output. This switch displays the SQL statements contained in
the messages to the screen and, if the -o switch is used, to a log file.

-x Renames transaction log after it has been scanned for outgoing
messages. Since replication can have the effect of backing up a database, in
many cases this switch eliminates the need to run DBBACKUP on the
remote computer (or renaming the transaction log when the engine is shut
down).

865

The SQL Remote Message Agent

Registry settings SQL Remote uses several registry settings (in Windows 95 and NT) or
initialization file settings (Windows 3.x and OS/2) to control aspects of
message link behavior.

In the registry, the settings are stored in the Current User, under

Software» Sybase»SQL Anywhere» Sybase SQL Anywhere 5.0»SQL
Remote. In Windows 3.x and OS/2, they are stored in the SQLANY.INI
initialization file.

& For a listing of registry settings, see "Message link control parameters"
in the chapter "SQL Remote Administration".

866

Chapter 37 SQL Anywhere Components

The Stop utility

The Stop utility stops a SQL. Anywhere standalone engine, network server,
or SQL Anywhere Client.

All memory used by the database engine is returned to the system for use by
other applications.

The Stop utility is a command-line utility only. In Windowing
environments, you can stop a database engine or server by clicking Close on
the engine window or choosing Exit from the File menu on the server
window.

The DBSTOP command-line utility

Syntax dbstop [switches] { name | CLIENT }

Windows 3.x dbstopw [switches] { name | CLIENT }

syntax
Parameter Description
-q Quiet mode—do not print messages
-s "keyword=value; ..." Supply database connection parameters
-X Do not stop if there are active connections
name Engine or server name

In DOS, it is not necessary to specify a name, because only one database
engine or client can be running.

In QNX, DBSTOP can shut down a server on any node on the network. The
name is necessary to specify the name of the server you wish to stop.

The DBSTOP command is not necessary after the database engine has been
started by ISQL. ISQL automatically unloads the database engine when it
disconnects.

DBSTOP CLIENT stops the SQL Anywhere Client only.

&> For more information about the command-line switches, see "Stop
utility options", next.

867

The Stop utility

Stop utility options

QNX switch

868

-q Operate quietly. Do not print a message if the database was not
running.

-s When stopping a database server, you must supply a connection string
with a user ID that has permissions to stop the server or engine. By default,
DBA permission is required on the database server, and all users can shut
down a standalone engine, but the -gk switch on the engine or server can be
used to change this.

& For a description of the connection parameters, see "Database
connection parameters" in the chapter "Connecting to a Database".To
shut down a database server, the connection string must include an
AGENT parameter in addition to the usual connection parameters.
AGENT must be set to the value SERVER to shut down a server. A
sample command line is:

dbstop -s "uid=dba;pwd=sql;
agent=server;unconditional=true"

-x Do not stop the engine if there are still active connections to the engine.

-p password Specify a password to unlock the server. If the server's
keyboard is locked and no password is specified or the specified password is
incorrect, then the server will not shut down.

Chapter 37 SQL Anywhere Components

The Transaction Log utility

With the Transaction Log utility you can display or change the name of the
transaction log or transaction log mirror associated with a database. You
can also stop a database from maintaining a transaction log or mirror, or
start maintaining a transaction log or mirror.

A transaction log mirror is a duplicate copy of a transaction log, maintained
by a database in tandem.

The name of the transaction log is first set when the database is initialized.
The Transaction Log utility works with database files or with write files.
The database engine must not be running on that database when the
transaction log filename is changed (an error message is displayed if it is).

You can access the Transaction Log utility in the following ways:

¢ From Sybase Central, for interactive use under Windows 95 or NT
¢ From the ISQL Database Tools window.

¢ From the ISQL DBTOOL statement.
*

From the system command line, using the DBLOG command-line
utility

Changing a log file name from Sybase Central

+ To change a transaction log file name:
1 Open the Database Utilities folder in the left panel.

2 Double-click Change Log File in the right panel. The Transaction Log
Wizard is displayed

3 Follow the instructions in the Wizard.

&> For full information on changing a log file name from Sybase Central,
see the Sybase Central online Help.

869

The Transaction Log utility

Changing a log file name from the ISQL Database Tools window

< To use the Translation Log utility from the ISQL Database Tools
window to change a log filename:

1 Select Database Tools from the Window menu.

(5 I - VS B]

Click Change Transaction Log Name on the Tools list.
Enter the database filename (with path).
Click Change, and select from the options on the dialog.

Click OK to change the name of the transaction log, or to run without a
transaction log.

Changing a log filename from the DBTOOL statement

Syntax DBTOOL ALTER DATABASE name
NO [TRANSACTION | LOG
| SET [TRANSACTION | LOG TO filename

You can rename the database filename as well as the transaction log name

from the DBTOOL statement.

The DBLOG command-line utility

Syntax dblog [switches] database-file
Windows 3.x dblogw [switches] database-file
syntax
Switch Description
-8n Sets the generation number to n

-il

-m mirror-name
-n
-0

-q

870

Ignores the LTM truncation offset stored in the
database

Ignores the SQL Remote truncation offset stored
in the database

Set transaction log mirror name
No longer use a transaction log
Output messages to file

Quiet mode—do not print messages

Chapter 37 SQL Anywhere Components

-r No longer use a transaction log mirror

-t log-name Set transaction log name

&>~ For more information about the command-line switches, see
"Transaction log utility options", next.

Transaction log utility options

Set the generation number This option is for use when using the SQL
Anywhere Log Transfer Manager in order to participate in a Replication
Server installation. It can be used after a backup is restored to set the
generation number. It performs the same function as the following
Replication Server function:

dbcc settrunc('ltm', 'gen_id', n).

For information on generation numbers and dbcc, see your Replication
Server documentation. For the DBLOG command-line utility, this is the -g
command-line switch.

Ignore the LTM truncation offset This option is for use when using the
SGL Anywhere Log Transfer Manager in order to participate in a
Replication Server installation. It performs the same function as the
following Replication Server function:

dbcc settrunc('ltm', 'gen_id', n).

For information on dbcc, see your Replication Server documentation. For
the DBLOG command-line utility, this is the -il command-line switch.

Ignore the SQL Remote truncation offset This option is for use when
using the SQL Anywhere Log Transfer Manager in order to participate in a
Replication Server installation and a SQL Remote installation. It resets the
offset that is kept for the purposes of the DELETE_OLD_LOGS option,
allowing transaction logs to be deleted when they are no longer needed. For
the DBLOG command-line utility, this is the -ir command-line switch.

Set the name of the transaction log mirror file This option sets a
filename for a new transaction log mirror. If the database is not currently
using a transaction log mirror, it starts using one. If the database is already
using a transaction log mirror, it changes to using the new filename as its
transaction log mirror. For the DBLOG command-line utility, this is the -m
command-line switch.

871

The Transaction Log utility

872

No longer use a transaction log Stop using a transaction log. Without a
transaction log, the database will no longer be able to participate in data
replication or use the transaction log in data recovery. For the DBLOG
command-line utility, this is the -n command-line switch.

Output log messages to file Redirect log messages to the named file.
For the DBLOG command-line utility, this is the -o command-line switch.

Operate quietly Do not display messages on a window. For the DBLOG
command-line utility, this is the -q command-line switch. This option is not
available from other environments.

No longer use a transaction log mirror For databases maintaining a
mirrored transaction log, this option changes their behavior to maintain
only a single transaction log. For the DBLOG command-line utility, this is
the -r command-line switch.

Set the name of the transaction log file This option sets a filename for
a new transaction log. If the database is not currently using a transaction
log, it starts using one. If the database is already using a transaction log, it
changes to using the new filename as its transaction log. For the DBLOG
command-line utility, this is the -t command-line switch.

Chapter 37 SQL Anywhere Components

The Uncompression utility

With the Uncompression utility you can expand a compressed database file
created by the Compression utility. The Uncompression utility reads the
given compressed database file and creates an uncompressed database file.

The Uncompression utility does not uncompress files other than the main
database file (dbspace files).

You can access the Uncompression utility in the following ways:

¢ From Sybase Central, for interactive use under Windows 95 or NT.
¢ From the ISQL Database Tools window.

¢ From the ISQL DBTOOL statement.
L4

From the system command line, using the DBEXPAND command-line
utility. This is useful for incorporating into batch or command files.

Uncompressing a database in Sybase Central

+ To uncompress a compressed database file:
1 Open the Database Utilities folder in the left panel.

2 Double-click Uncompress Database in the right panel. The Uncompress
Wizard is displayed.

3 Follow the instructions in the Wizard.

& For full information on uncompressing a database in Sybase Central,
see the Sybase Central online Help.

Uncompressing a database from the ISQL Database Tools window

+ To use the Uncompression utility from the ISQL Database Tools
window:

1 Select Database Tools from the Window menu.
2 Click Uncompress Database on the Tools list.

3 Enter the database filename (with path).

873

The Uncompression utility

4 Click Uncompress, and enter a filename to use for the uncompressed
database.

5 Click OK to uncompress the selected database file.

Uncompressing a database using the DBTOOL statement
Syntax The syntax for the Uncompression utility from the ISQL DBTOOL
statement is as follows:
DBTOOL UNCOMPRESS DATABASE compressed-database-file
[TO filename 1 [NOCONFIRM]

Example The following statement uncompresses the compressed database file
C:\TEMP.CDB, creating the database file CATEMP.DB

DBTOOL UNCOMPRESS DATABASE 'c:\temp.cdb'

The DBEXPAND command-line utility

Syntax dbexpand [switches] compressed-database-file [database-file]
Windows 3.x dbexpanw [switches] compressed-database-file [database-file]
syntax

Switch Description

-q Operate quietly—do not print messages

-y Erase existing output file without confirmation

The input filename extension defaults to CDB. The output filename (with
extension) must not have the same name as the input filename (with
extension).

&> For more information about the command-line switches, see
"Uncompression utility options", next.

Uncompression utility options

Output log messages to file Redirect log messages to the named file.
For the DBEXPAND command-line utility, this is the -o option.

874

Chapter 37 SQL Anywhere Components

Operate quietly Do not display messages on a window. For the
DBEXPAND command-line utility, this is the -q command-line switch.
This option is not available from other environments.

Operate without confirming actions Without this option, you are
prompted to confirm the replacement of an existing database file. For the
DBEXPAND command-line utility, this is the -y command-line switch.

875

The Unload utility

The Unload utility

Objects owned by
dbo

With the Unload utility you can unload a database and put data files into a
set of files in a named directory. The Unload utility creates the ISQL
command file RELOAD.SQL to rebuild your database from scratch. It also
unloads all of the data in each of your tables in comma delimited format
into files in the specified directory. Binary data is properly represented with
escape sequences.

You can access the Unload utility in the following ways:

¢ From Sybase Central, for interactive use under Windows 95 or NT.
¢ From the ISQL Database Tools window.

¢ From the ISQL DBTOOL statement.
¢

From the system command line, using the DBUNLOAD command-line
utility. This is useful for incorporating into batch or command files.

The Unload utility should be run from a DBA user ID. This is the only way
you can be sure of having privileges to unload all the data. Also, the

RELOAD.SQL file should be run from the DBA user ID. (Usually it will be
run on a new database where the only user ID is DBA with password SQL.)

The dbo user ID owns a set of SQL Server-compatible system objects in a
SQL Anywhere database.

The Unload utility does not unload the objects created for the dbo user ID
during database creation. Changes made to these objects, such as redefining
a system procedure, are lost when the data is unloaded. Any objects created
by the dbo user ID since the initialization of the database are unloaded by
the Unload utility, and so these objects are preserved.

Unloading a database from Sybase Central

876

« To unload a running database:

1 Connect to the database.

2 Right-click the database and click Unload in the popup menu. The
Unload Database Wizard is displayed.

3 Follow the instructions in the Wizard.

Chapter 37 SQL Anywhere Components

+ To unload a database file or a running database:

1
2

3

Open the Database Utilities folder in the left panel.

Double-click Unload Database in the right panel. The Unload Database
Wizard is displayed.

Follow the instructions in the Wizard.

& For full information on unloading a database from Sybase Central, see
the Sybase Central online Help.

Unloading a database from the ISQL Database Tools window

+ To use the Unload utility from the ISQL Database Tools window:

1

2
3
4

Select Database Tools from the Window menu.
Click Unload Database on the Tools list.
Enter a user ID and password to use when connecting to the database.

For a running database, enter a database name and server name (if
more than one is running). For a database file, enter the filename (with
path) and optionally a start line to specify command-line switches for
the database engine or SQL. Anywhere Client.

Click Unload, and enter a filename to use for the command file and a
directory in which to hold the data. Select from the other options in the
dialog.

Click OK to unload the database.

Unloadihg a database from the DBTOOL statement

Syntax The syntax for the Unload utility from the ISQL DBTOOL statement is as
follows:

DBTOOL UNLOAD TABLES TO directory
[RELOAD FILE TO filename]
[DATA]
| [SCHEMA]
[UNORDERED] [VERBOSE] USING connection-string

877

The Unload utility

The DBUNLOAD command-line utility

Syntax

Windows 3.x
syntax

878

dbunload [switches] directory [table-name-list]

dbunloaw [switches] directory [table-name-list]

Switch Description

-c "keyword=value; ..." Supply database connection parameters

-d Unload data only

-e No data output for listed tables

-g userid Specify user name as replacement for dbo

-i Data output for listed tables only

-j nnn Repeated unload of view creation statements

-n No data—schema definition only

-p Escape character for external unloads

-q Quiet mode—no windows or messages

-r reload-file Specify name and directory of generated reload
ISQL command file (default RELOAD.SQL)

-u Unordered data

-V Verbose messages

-X External unload (when client and server are on
different machines)

-y Replace command file without confirmation

In the default mode the directory used by DBUNLOAD to hold the data is
relative to the database engine or server, not to the current directory of the
user. For details of how to supply a filename and path in this mode, see
"UNLOAD TABLE statement" in the chapter "Watcom-SQL Statements". If
the -x switch is used, the directory is relative to the current directory of the
user. The RELOAD.SQL command file is always relative to the current
directory of the user, regardless of whether -x is used.

If no list of tables is supplied, the whole database is unloaded. If a list of
tables is supplied, only those tables are unloaded.

& For more information about the command-line switches, see "Unload
utility options", next.

Chapter 37 SQL Anywhere Components

Unload utility options

Connection parameters For a description of the connection parameters,
see "Database connection parameters" in the chapter "Connecting to a
Database". If the connection parameters are not specified, connection
paremeters from the SQLCONNECT environment variable are used, if set.
The user ID should have DBA authority to ensure that the user has
permissions on all the tables in the database.

For the DBUNLOAD command-line utility, this is the -c command-line
switch. For example, the following statement unloads the sademo database
running on the sample_server server, connecting as user ID DBA with
password SQL. The data is unloaded into the C:\UNLOAD directory.

dbunload -c
"eng=sample_server;dbn=sademo;uid=dba;pwd=sqgl"
c:\unload

Unload data only With this option, none of the database definition
commands are generated (CREATE TABLE, CREATE INDEX, and so on);
RELOAD.SQL contains statements to reload the data only. For the
DBUNLOAD command-line utility, this is the -d command-line switch.

No data output for listed tables For the DBUNLOAD command-line
utility, this is the -e command-line switch. This is not accessible from other
environments. By default, the optional table-list defines the tables to be
unloaded. If you wish to unload almost all the tables in the database, the -e
command-line switch unloads all tables except the specified tables.

User ID for dbo user SQL Anywhere contains a set of system views that
mimic the system tables of Sybase SQL Server. By default, the owner of
these views is the user ID dbo, which is the same as the owner of the SQL
Server system tables, but you may have configured this differently when
creating or upgrading your database. If the SQL Server-compatibility system
views in your database are owned by a user other than dbe, specify that user
ID in this option. Views and procedures owned by the user ID you specify
are not unloaded. For the DBUNLOAD command-line utility, this is the -g
command-line switch.

Data output for listed tables only For the DBUNLOAD command-line
utility, this is the -i command-line switch. This is not accessible from other
environments. This switch is the default option, and causes only the
supplied table-list to be unloaded.

879

The Unload utility

880

Repeated unload of view creation statements If your database
contains view definitions that are dependent on each other, you can use this
option to avoid failure in reloading the views into a database. The option
causes view creation statements to be unloaded multiple times, as specified
by the count entered. This count should be small, and should correspond to
the number of levels of view dependency. For the DBUNLOAD command-
line utility, this is the -j command-line switch.

Unload schema definition only With this option, none of the data in the
database is unloaded; RELOAD.SQL contains SQL statements to build the
structure of the database only. For the DBUNLOAD command-line utility,
this is the -n command-line switch.

Escape character The default escape character (\) for external unloads
(DBUNLOAD -x switch) can be replaced by another character using this
option. For the DBUNLOAD command-line utility, this is the -p command-
line switch. This option is not available from other environments.

Operate quietly Display no messages except errors. For the DBUNLOAD
command-line utility, this is the -q command-line switch. This option is not
available from other environments.

Specify reload filename Modify the name and directory of the generated
reload ISQL command file. The default is RELOAD.SQL in the current
directory. For the DBUNLOAD command-line utility, this is the -r
command-line switch.

Output the data unordered Normally the data in each table is ordered by
the primary key. Use this option if you are unloading a database with a
corrupt index so that the corrupt index is not used to order the data. For the
DBUNLOAD command-line utility, this is the -u command-line switch.

Enable verbose mode The table name of the table currently being
unloaded and how many rows have been unloaded is displayed. For the
DBUNLOAD command-line utility, this is the -v command-line switch.
This option is not available from other environments.

Use external unloading The Unload utility uses the UNLOAD TABLE
statement by default. If the external unloading option is specified, the ISQL
OUTPUT statement is used to extract the data, and the generated reload
command file uses the INPUT INTO statement to reload the data. For the
DBUNLOAD command-line utility, this is the -x command-line switch.

Chapter 37 SQL Anywhere Components

Rebuilding a
database

The default mode is faster than the external unloading mode. However, in
the default mode the directory used by the Unload utility to hold the data is
relative to the database server, not to the current directory of the user. The
RELOAD.SQL command file is always relative to the current directory of
the user, regardless of whether external unloading is used.

&>" For more information on filenames and paths for the Unload utility,
see "UNLOAD TABLE statement" in the chapter "Watcom-SQL
Statements".

Operate without confirming actions Without this option, you are
prompted to confirm the replacement of an existing command file. For the
DBUNLOAD command-line utility, this is the -y command-line switch.

To unload a database, start the database engine with your database, and run
the Unload utility with the DBA user ID and password.

To reload a database, you need to create a new database and then run the
generated RELOAD.SQL command file through ISQL or RTSQL.

In Windows 95 and Windows NT, there is a file (REBUILD.BAT) included
with SQL Anywhere that automates the unload and reload process. In
Windows 3.x, rebuilding can be done from the ISQL Database Tools
window.

In DOS, OS/2, Windows 95 and NT, and QNX, there is a file
(REBUILD.BAT, REBUILD.CMD, or rebuild) included with SQL
Anywhere that automates the unload and reload process. In Windows 3.x,
rebuilding can be done from the ISQL Database Tools window.

881

The Upgrade utility

The Upgrade utility

The Upgrade utility upgrades a database created with Watcom SQL 3.2 or
Watcom SQL 4.0 to the SQL Anywhere 5.0 format. While SQL Anywhere
5.0 does run against a database created with Watcom SQL 3.2 or Watcom
SQL 4.0, some of the features introduced since the version that created the
database are unavailable unless the database is upgraded.

For people switching from release 3.2 or 4.0 to the current release, the
Upgrade utility upgrades their databases without having to unload and
reload them.

If you wish to use replication on an upgraded database, you must also
archive your transaction log and start a new one on the upgraded database.

You can access the Upgrade utility in the following ways:
¢ From Sybase Central, for interactive use under Windows 95 or NT.

¢ From the system command-line, using the DBUPGRAD command-line
utility.

Upgrading a database from Sybase Central

< To upgrade a database:

1 Open the Database Utilities folder in the left panel.

2 Double-click Uprade Database in the right panel. The Upgrade
Database Wizard is displayed.

3 Follow the instructions in the Wizard.

& For full information on upgrading a database from Sybase Central, see

the Sybase Central online Help.

Upgrading databases too old for the Upgrade utility

882

% To upgrade a database created with a version of SQL Anywhere that

is too old to be upgraded:
1 Unload the database using the Unload utility.

2 Create a database with the name you wish to use for the upgraded

version, using the Initialization utility.

Chapter 37 SQL Anywhere Components

3 Connect to the new database from ISQL as the DBA user ID, and read
the reaload.sql command file to build the new database.

The DBUPGRAD command-line utility

Syntax

Windows 3.x
syntax

dbupgrad [switches]

dbupgrdw [switches]

Switch Description

-¢ "keyword=value; ..." Supply database connection parameters
-g userid User ID to use as replacement for dbo
-k Close window on completion

-q Quiet mode—no windows or messages

&> For more information about the command-line switches, see "Upgrade
utility options", next.

Upgrade utility options

Connection parameters For a description of the connection parameters,
see "Database connection parameters" in the chapter "Connecting to a
Database". If the connection parameters are not specified, connection
paremeters from the SQLCONNECT environment variable are used, if set.
The user ID must have DBA authority.

For the DBUPGRAD command-line utility, this is the -c command line
switch. For example, the following command upgrades a database called
sample40 to a 5.0 format, connecting as user dba with password sql:

dbupgrad -c
"uid=dba;pwd=sql;dbf=c:\wsqgl40\sampled0.db"

The DBUPGRAD command-line utility must be run by a user with DBA
authority.

883

The Upgrade utility

884

User ID for dbo user SQL Anywhere contains a set of system views that
mimic the system tables of Sybase SQL Server. By default, the owner of
these views is the user ID dbo, which is the same as the owner of the SQL
Server system tables. If you already have a user ID named dbo, or you wish
to use that user ID for other purposes, this option allows you to provide an
alternative user ID for the owner of the SQL Server-like system views. For
the DBUPGRAD command-line utility, this is the -g command-line switch.

Close window on completion Once the upgrade is completed, the
message window is closed. For the DBUPGRAD command-line utility, this
is the -k command line switch. This option is not available from other
environments.

Operate quietly Do not display messages on a window For the
DBUPGRAD command-line utility, this is the -q command line switch.
This option is not available from other environments.

Chapter 37 SQL Anywhere Components

The Validation utility

With the Validation utility you can validate all indexes and keys on some or
all of the tables in the database. The Validation utility scans the entire table,
and looks up each record in every index and key defined on the table.

This utility can be used in combination with regular backups (see the

chapter "Backup and Data Recovery") to give you confidence in the security
of the data in your database.

You can access the Validation utility in the following ways:

¢ From Sybase Central, for interactive use under Windows 95 or NT.
¢ From the ISQL Database Tools window.

¢ From the ISQL DBTOOL statement.
*

From the system command line, using the DBVALID command-line
utility. This is useful for incorporating into batch or command files.

& For more For more information on validating tables, see "VALIDATE TABLE
information statement" in the chapter "Watcom-SQL Statements".

Validating a database from Sybase Central

< To validate a running database:
1 Connect to the database.

2 Right-click the database and click Validate in the popup menu.

+ To validate an individual table:
1 Connect to the database.
2 Locate the table you wish to validate.

3 Right-click the table and click Validate in the popup menu.

& For full information on validating a database from Sybase Central, see
the Sybase Central online Help.

885

The Validation utility

Validating a database from the ISQL Database Tools window

< To use the Validation utility from the ISQL Database Tools window:

1

2
3
4

Select Database Tools from the Window menu.
Click Check Database Integrity on the Tools list.
Enter a user ID and password to use when connecting to the database.

For a running database, enter a database name and server name (if
more than one is running). For a database file, enter the filename (with
path) and optionally a start line to specify command line switches for
the database engine or SQL Anywhere Client.

Click Check.

Enter a list of tables to validate, if you do not wish to validate the entire
database, and click OK.

Using the Validation utility from the DBTOOL statement

The syntax for the Validation utility from the ISQL DBTOOL statement is
as follows:

DBTOOL VALIDATE TABLES [11, t2, ..., tn]

USING connection-string

Using the DBVALID command line utility

Syntax dbvalid [switches] [table-name,...]

Windows 3.x dbvalidw [switches] [table-name,...]

syntax
Switch | Description
-¢ "keyword=value; ..." Supply database connection parameters
-q Quiet mode—do not print messages

& For more information about the command-line switches, see
"Validation utility options", next.

886

Chapter 37 SQL Anywhere Components

Validation utility options

Connection parameters For a description of the connection parameters,
see "Database connection parameters" in the chapter "Connecting to a
Database". If the connection parameters are not specified, connection
paremeters from the SQLCONNECT environment variable are used, if set.
The user ID must have DBA authority.

For the DBVALID command-line utility, this is the -c command line
switch. For example, the following validates the sample database,
connecting as user dba with password sql:

dbvalid -c
"uid=dba;pwd=sqgl;dbf=c:\sglany50\sademo.db"

Operate quietly Do not display messages on a window. For the
DBVALID command-line utility, this is the -q command line switch. This
option is not available from other environments.

887

The Write File utility

The Write File utility

Using write files for
development

Compressed
databases

7
o

The Write File utility is used to manage database write files. A write file is
a file attached to a particular database. All changes are written into the
write file, leaving the database file unchanged.

Write files can be used effectively for testing when you do not wish to
modify the production database. They can also be used in network and
student environments where read-only access to a database is desired, or
when you distribute on CD-ROM a database you wish users to be able to
modify.

If you are using a compressed database, then you must use a write file;
compressed database files cannot be modified directly. The write file name
is then used in place of the database name when connecting to the database
or when loading a database on the database engine or server command line.

To access the Write File utility:
¢ From Sybase Central, for interactive use under Windows 95 or NT.
From the ISQL Database Tools window.

L4
¢ From the ISQL DBTOOL statement.
¢

From the system command line, using the DBWRITE command-line
utility. This is useful for incorporating into batch or command files.

The Write File utility runs against a database file. The database must not be
running on an engine when you run the Write File utility.

Creating a write file from Sybase Central

888

R
o

To create a write file for a database:
1 Open the Database Utilities folder in the left panel.

2 Double-click Create Write File in the right panel. The Write File
Wizard is displayed.

3 Follow the instructions in the Wizard.

&~ For full information on creating a write file from Sybase Central, see
the Sybase Central online Help.

Chapter 37 SQL Anywhere Components

Creating a write file from the ISQL Database Tools window

++ To use the Write File utility from the ISQL Database Tools window:

A LW =

Select Database Tools from the Window menu.
Click Create Write File on the Tools list.
Enter the database filename (with path).

Click Create, and enter a filename to use for the write file and for the

write file transaction log.

5 Click OK to create the write file.

Creating a write file using the DBTOOL statement

Syntax The syntax for the Write File utility from the ISQL DBTOOL statement is

as follows:

DBTOOL CREATE WRITEFILE filename FOR DATABASE filename
[[TRANSACTION | LOG TO /ogname | | NOCONFIRM |

The DBWRITE command-line utility

Syntax dbwrite [switches] database-file [write-name]
Windows 3.x dbwritew [switches] database-file [write-name]
syntax

Switch Description

-C

-d database-file
-f database-file

- mirror-name
-0 file

-q

-S

-t log-name

-y

Create a new write file

Point a write file to a different database
Force write file to point at file

Set transaction log mirror name

Output messages to file

Quiet mode—do not print messages
Report write file status (default)

Set transaction log name

Erase/replace old files without confirmation

889

The Write File utility

If any changes are made to the original database (not using the write file),
the write file will no longer be valid. This happens if you start the engine
using the original database file and make a modification to it. It can be
made valid again by the command:

dbwrite -c¢ db-name write-name
However, this deletes all changes recorded in the write file.

The log-name and mirror-name parameters are only used when creating a
new write file. The write-name parameter is only used with the -c and -d
parameters. Note that the db-name parameter must be specified before the
write-name parameter.

&> For more information about the command-line switches, see "Write
file utility options", next.

Write file utility options

890

Create a new write file If an existing write already exists, any
information in the old write file will be lost. If no write filename is specified
on the command line, the write filename will default to the database name
with the extension WRT. If no transaction log name is specified, the log
filename will default to the database name with the extension WLG. For the
DBWRITE command-line utility, this is the -c command-line switch.

Change the database file to which an existing write file points If a
database file is moved to another directory, or renamed, this option allow
you to maintain the link between the write file and the database file. For the
DBWRITE command-line utility, this is the -d command-line switch. The
option is not available in other environments.

Force a write file to point to a file For the DBWRITE command-line
utility, this is the -f command-line switch. The option is not available in
other environments. This option is for use when a write file is being created
and the database file is held on a Novell NetWare or other network path, for
operating systems on which they cannot be entered directly. By providing
the full Novell path name for the database file, (for example:
SYS\WSADEMO.DB), dependencies on local mappings of the NetWare path
can be avoided. Unlike the option to change the database file pointed to, no
checking is done on the specified path.

Operate quietly Do not display messages on a window. For the
DBWRITE command-line utility, this is the -q command-line switch. This
option is not available from other environments.

Chapter 37 SQL Anywhere Components

Report write file status only This displays the name of the database that
the write file points to. For the DBWRITE command-line utility, this is the
-s command-line switch. The option is not available in other environments.

Operate without confirming actions Without this option, you are
prompted to confirm the replacement of an existing database file. For the
DBWRITE command-line utility, this is the -y command-line switch.

891

The SQL Preprocessor

The SQL Preprocessor

The SQL preprocessor processes a C or C++ program with embedded SQL
before the compiler is run.

Syntax sqlpp [switches] sql-filename [output-filename]
Switch Description
-c Favor code size
-d Favor data size
-e level Flag non-conforming SQL syntax as an error
-f Put far keyword on generated static data
-h line-width Limit maximum line length of output
-1 userid, pswd Logon identification
-n Line numbers
-0 operating-sys Target operating system specification DOS, DOS32,
DOS286, WINDOWS, WIN32 0S232, WINNT,
NETWARE, QNX32(default is DOS, 0S232, or WINNT)
-q Quiet mode—do not print banner
-r generate reentrant code
=S string-len Maximum string constant length for compiler
-w level Flag non-conforming SQL syntax as a warning
-Z sequence Specify collation sequence
See also "The C language SQL preprocessor" in the chapter "The Embedded SQL
Interface"

Description The SQL preprocessor processes a C or C++ program with embedded SQL
before the compiler is run. SQLPP translates the SQL statements in the
input-file into C language source that is put into the output-file. The normal
extension for source programs with embedded SQL is SQC. The default
output filename is the sql-filename with an extension of C. If the sql-
filename has a C. extension, then the output filename extension is CC by
default.

Switches

892

-¢ Generate code that will favor code size and execution speed over data
space size. Statically initialized data structures will be used as much as
possible. This is the default.

Chapter 37 SQL Anywhere Components

-d Generate code that will reduce data space size. Data structures will be
reused and initialized at execution time before use. This increases code size.

-e level This option flags any Embedded SQL that is not part of a
specified set of SQL/92 as an error.

The allowed values of level and their meanings are as follows:
¢ e flag syntax that is not entry-level SQL/92 syntax

¢ i flag syntax that is not intermediate-level SQL/92 syntax
¢ f flag syntax that is not full-SQL/92 syntax
*

w allow all supported syntax

-f Put the far keyword in front of preprocessor generated data. This may be
required in conjunction with the Borland C++ compiler for the large
memory model. By default, all static data is put in the same segment.
Adding the far keyword will force static data into different segments. (By
default, WATCOM C and Microsoft C place data objects bigger than a
threshold size in their own segment.)

-h num Limits the maximum length of lines output by SQLPP to num.
The continuation character is a backslash (\), and the minimum value of
num is ten.

-l userid, password The named userid and password will be used for
authorization of static SQL statements (see "Authorization" in the chapter
"The Embedded SQL Interface").

-n Generate line number information in the C file. This consists of #line
directives in the appropriate places in the generated C code. If the compiler
you are using supports the #line directive, this switch will make the
compiler report errors on line numbers in the SQC file (the one with the
Embedded SQL) as opposed to reporting errors on line numbers in the C file
generated by the SQL preprocessor. Also, the #line directives will indirectly
be used by the source level debugger so that you can debug while viewing
the SQC source file.

-0 operating-sys Specify the target operating system. Note that this
option must match the operating system you will be running the program in.
A reference to a special symbol will be generated in your program. This
symbol is defined in the interface library. If you use the wrong operating
system specification or the wrong library, an error will be detected by the
linker. The supported operating systems are:

DOS MS-DOS or DR-DOS
893

The SQL Preprocessor

894

DOS32 32-bit DOS extended program
DOS286 286 DOS extended program
WINDOWS Microsoft Windows 3.x
WIN32 32-bit Microsoft Windows
08232 32-bit 0S/2

WINNT Microsoft Windows NT
NETWARE Novell NetWare

QNX 16-bit QNX

QNX32 32-bit QNX

The default is DOS for the DOS version of SQLPP, 0S232 for the OS/2
version, WINNT for the Windows NT version and QNX for the QNX
version.

-r Generate reentrant code. This statement is only necessary when you are
writing code that is reentrant (see "Multi-Threaded or Reentrant Code" in
the chapter "The Embedded SQL Interface").

-q Operate quietly. Do not print the banner.

-s string-len Set the maximum size string that the preprocessor will put
into the C file. Strings longer than this value will be initialized using a list
of characters ('a’,'b’,'c’, etc). Most C compilers have a limit on the size of
string literal they can handle. This option is used to set that upper limit. The
default value is 500.

-w level This option flags any Embedded SQL that is not part of a
specified set of SQL/92 as a warning.

The allowed values of level and their meanings are as follows:
¢ e flag syntax that is not entry-level SQL/92 syntax

¢ i flag syntax that is not intermediate-level SQL/92 syntax
¢ f flag syntax that is not full-SQL/92 syntax
*

w allow all supported syntax

CHAPTER 38
Watcom-SQL Language Reference

About this chapter This chapter presents detailed descriptions of the language elements and
conventions of Watcom-SQL — one of two SQL dialects native to SQL
Anywhere.

Contents Topic Page
Syntax conventions 896
Watcom-SQL language elements 897
Expressions 899
Search conditions 907
Comments in Watcom-SQL 915

& For more information about Transact SQL, the other SQL dialect
supported by SQL Anywhere, please see "Transact-SQL Procedure
Language".

895

Syntax conventions

Syntax conventions

896

The following conventions are used in the SQL syntax descriptions:

L

Keywords All keywords are shown in uppercase. This is often the
way SQL statements are typed. However, SQL Anywhere allows all
keywords to be in mixed case. Thus SELECT is the same as Select
which is the same as select.

Placeholders Items that the user must replace with appropriate
identifiers or expressions are shown in lowercase.

Options Options are separated by vertical bars. Any one of the items
is allowed.

Continuation Lines beginning with ... are a continuation of the
statements from the previous line.

Lists Lists are shown with a list element followed by ",...". This
means that one or more list elements are allowed and if more than one
is specified, they must be separated by commas.

Optional portions Optional portions of a statement are enclosed by
square brackets. For example, RELEASE SAVEPOINT [savepoint-
name] indicates that the savepoint-name is optional. Alternative
optional parts of a statement are sometimes listed within the brackets
separated by vertical bars. For example, [ASC | DESC] indicates that
ASC or DESC are optional.

Alternatives When one of the options must be chosen, the
alternatives are enclosed in curly braces. For example [QUOTES { ON
I OFF }]indicates that if the QUOTES option is chosen, one of ON or
OFF must be provided. The braces should not be typed.

Chapter 38 Watcom-SQL Language Reference

Watcom-SQL language elements

The following elements are found in the syntax of many SQL statements.
Each of these elements is discussed in more detail later in this chapter.

column-name An identifier representing the name of a column.

condition An expression that evaluates to TRUE, FALSE, or
UNKNOWN. See "Search conditions” on page 907.

connection-name An identifier or a string representing the name of an
active connection.

owner An identifier representing a user ID.

data-type A storage data type as described in "SQL Anywhere Data
Types".

expression An expression, as described in "Expressions" on page 899.
filename A string containing a filename.

host-variable A C language variable declared as a host variable preceded
by a colon.

identifier Any string of the characters A through Z, a through z, 0
through 9, underscore (_), at sign (@), number sign (#), or dollar sign ($).
The first character must be a letter. Alternatively, any string of characters
can be used as an identifier by enclosing it in quotation marks ("double
quotes"). A quotation mark inside the identifier is represented by two
quotation marks in a row. Identifiers are truncated to 128 characters. The
following are all valid identifiers.

Surname
"Surname"
SomeBigName
some_big_name
"Client Number"

"With a quotation "" mark"

indicator-variable A second host variable of type short int immediately
following a normal host variable. It must also be preceded by a colon.
Indicator variables are used to pass NULL values to and from the database.

897

Watcom-SQL language elements

898

number Any sequence of digits followed by an optional decimal part and
preceded by an optional negative sign. Optionally, the number can be
followed by an E and then an exponent. For example,

42
-4.038
.001
3.4el0
le-10

role-name An identifier representing the role name of a foreign key.

search-condition A condition that evaluates to TRUE, FALSE, or
UNKNOWN. See "Search conditions" on page 907.

string Any sequence of characters enclosed in apostrophes ('single
quotes'). An apostrophe is represented inside the string by two apostrophes
in a row. A new line character is represented by a backslash followed by an
n (\n). Hexadecimal escape sequences can be used for any character,
printable or not. A hexadecimal escape sequence is a backslash followed by
an x followed by two hexadecimal digits (for example, \x6d represents the
letter m). A backslash character is represented by two backslashes in a row
(\\). The following are valid strings:

'This is a string.'
‘John''s database’

"\x00\x01\x02\x03"
savepoint-name An identifier representing the name of a savepoint.

statement-label An identifier representing the label of a loop or
compound statement.

table-list A list of table names which may include correlation names. See
"FROM clause" in the chapter "Watcom-SQL Statements".

table-name An identifier representing the name of a table.
userid An identifier representing a user name.

variable An identifier representing a variable name.

Chapter 38 Watcom-SQL Language Reference

Expressions

Syntax

Usage
Authorization
Side effects

See also

Description

expression:
constant
| [correlation-name .] column-name
| variable-name
| function-name (expression, ...)
| - expression
| expression + expression
| expression - expression
| expression * expression
| expression | expression
| expression + expression
| expression || expression
| (expression)
| (subquery)
| CAST (expression AS data-type)
| if-expression

constant.
integer
| number
| 'string’
| special-constant
| host-variable

special-constant.
CURRENT DATE
| CURRENT TIME
| CURRENT TIMESTAMP
| NULL
| SQLCODE
| SQLSTATE
| USER

if-expression:
IF condition THEN expression [ELSE expression | ENDIF

Anywhere.
Must be connected to the database.
None.

Search conditions, on page 907
"SQL Anywhere Data Types"

Expressions are formed from the following elements:

¢ Constants

899

Expressions

* & o oo o

Column names
Variables
Functions
Subqueries

Operators

Constants in expressions

900

Constants are numbers or strings. String constants are enclosed in
apostrophes ('single quotes'). An apostrophe is represented inside the string
by two apostrophes in a row.

There are several special constants:

L

CURRENT DATE The current year, month and day represented in the
DATE data type.

CURRENT TIME The current hour, minute, second and fraction of a
second represented in the TIME data type. Although the fraction of a

second is stored to 6 decimal places, the current time is limited by the
accuracy of the system clock.

Under DOS and Windows, the clock is only accurate to approximately
1/18th of a second rounded to two decimal places. Under QNX, the
clock is accurate to the nearest microsecond.

CURRENT TIMESTAMP Combines CURRENT DATE and
CURRENT TIME to form a TIMESTAMP value containing year,
month, day, hour, minute, second and fraction of a second. Like
CURRENT TIME, the accuracy of the fraction of a second is limited by
the system clock.

In embedded SQL, a host variable can also be used in an expression
wherever a constant is allowed.

NULL The NULL value (see "NULL value" in the chapter "Watcom-
SQL Statements").

SQLCODE Current SQLCODE value (see the chapter "SQL
Anywhere Database Error Messages").

SQLSTATE Current SQLSTATE value (see the chapter "SQL
Anywhere Database Error Messages").

CURRENT USER A string containing the user ID of the current
connection.

Chapter 38 Watcom-SQL Language Reference

¢ CURRENT PUBLISHER A string containing publisher user ID of the
database for SQL Remote replications.

¢ LASTUSER For INSERTS, this constant has the same effect as
CURRENT USER. For UPDATES, if a column with a default value of
LAST USER is not explicitly altered, it is changed to the name of the
current user. In this way, the LAST USER default indicates the user ID
of the user who last modified the row.

When combined with the CURRENT TIMESTAMP, a default value of
LAST USER can be used to record (in separate columns) both the user
and the date and time a row was last changed..

In Embedded SQL, a host variable can also be used in an expression
wherever a constant is allowed.

Column names in expressions

A column name is an identifier preceded by an optional correlation name.
(A correlation name is usually a table name. For more information on
correlation names, see "FROM clause" in the chapter "Watcom-SQL
Statements".) If a column name has characters other than letters, digits and
underscore, it must be surrounded by quotation marks (""). For example, the
following are valid column names:

employee.name
address
"date hired"

"salary"."date paid"

& See "Watcom-SQL language elements" on page 897 for a complete
description of identifiers.

Watcom-SQL variables

SQL Anywhere supports three levels of variables:

¢ Local variables are defined inside a compound statement in a procedure
or batch using the DECLARE statement. They exist only inside the
compound statement.

901

Expressions

Local variables

902

¢ Connection-level variables are defined with a CREATE VARIABLE
statement. They belong to the current connection, and disappear when
you disconnect from the database or when you use the DROP
VARIABLE statement.

¢ Global variables are SQL Anywhere-supplied variables that have
system-supplied values.

Local variables are declared using the DECLARE statement, which can be
used only within a compound statement (that is, bracketed by the BEGIN
and END keywords). The variable is initially set as NULL. The value of the
variable can be set using the SET statement, or can be assigned using a
SELECT statement with an INTO clause.

Local variables can be passed as arguments to procedures, as long as the
procedure is called from within the compound statement.

The following batch of SQL statements illustrates the use of local variables.

BEGIN

DECLARE local_var INT ;

SET local_var = 10 ;

MESSAGE 'local_var = ', local_var ;
END

Running this batch from ISQL gives the message local_var = 10 on the
engine window.

The variable local_var does not exist outside the compound statement in
which it is declared. The following batch is invalid, and gives a column not
found error.

-- This batch is invalid.
BEGIN
DECLARE local_var INT ;
SET local_var = 10 ;
MESSAGE 'local_var = ', local_var ;
END;
MESSAGE 'local_var = ', local_var ;

The following example illustrates the use of SELECT with an INTO clause
to set the value of a local variable:
BEGIN
DECLARE local_var INT ;
SELECT 10 INTO local_var ;

MESSAGE 'local_var = ', local_var ;
END

Running this batch from ISQL gives the message local_var = 10 on the
engine window.

Chapter 38 Watcom-SQL Language Reference

Connection-level
variables

Global variables

Connection-level variables are declared with the CREATE VARIABLE
statement. The CREATE VARIABLE statement can be used anywhere
except inside compound statements. Connection-level variables can be
passed as parameters to procedures.

When a variable is created it is initially set to NULL. The value of
connection-level variables can be set in the same way as local variables,
using the SET statement or using a SELECT statement with an INTO
clause. The following batch of SQL statements illustrates the use of
connection-level variables.

CREATE VARIABLE con_var INT;

SET con_var = 10;
MESSAGE 'con_var = ', con_var;

Running this batch from ISQL gives the message local_var = 10 on the
engine window.

Connection-level variables exist until the connection is terminated, or until
the variable is explicitly dropped using the DROP VARIABLE statement.
The following statement drops the variable con_var:

DROP VARIABLE con_var

Global variables are SQL Anywhere-supplied variables that have values set
by the SQL Anywhere engine. For example, the global variable @ @version
has a value that is the current version number of the database engine.

Predefined global variables are distinguished from local and connection-
level variables by having two @ signs preceding their names. For example,
@ @error, @ @rowcount are global variables. Users cannot create global
variables, and cannot update the value of global variables directly.

The special constants available in SQL Anywhere, such as CURRENT
DATE, CURRENT TIME, USER, SQLSTATE and so on are similar to, but
not identical to, global variables. The special constants can be used as
defaults for columns; global variables cannot.

The following statement retrieves a value of the version global variable.
SELECT @@version

In procedures and triggers, global variables can be selected into a variable
list. The following procedure returns the engine version number in the ver
parameter.

CREATE PROCEDURE VersionProc (OUT ver
NUMERIC (5, 2))
BEGIN
SELECT @@version
INTO ver;

903

Expressions

END

In Embedded SQL, global variables can be selected into a host variable list.

The following table lists the global variables available in SQL Anywhere

Variable name

Meaning

@ @error

@ @identity

@ @isolation

@ @procid

@ @rowcount

@ @servername

@ @sqlstatus

@ @version

904

Commonly used to check the error status (succeeded or
failed) of the most recently executed statement. It contains 0
if the previous transaction succeeded; otherwise, it contains
the last error number generated by the system. A statement
such as if @ @error != 0 return causes an exit if an error
occurs. Every SQL statement resets @error, so the status
check must immediately follow the statement whose success
is in question.

Last value inserted into an IDENTITY column by an insert
or select into statement. @ @identity is reset each time a row
is inserted into a table. If a statement inserts multiple rows,
@ @identity reflects the IDENTITY value for the last row
inserted. If the affected table does not contain an IDENTITY
column, @ @ identity is set to 0. The value of @ @identity is
not affected by the failure of an insert or select into
statement, or the rollback of the transaction that contained it.
@ @identity retains the last value inserted into an
IDENTITY column, even if the statement that inserted it
fails to commit.

Current isolation level. @ @isolation takes the value of the
active level.

Stored procedure ID of the currently executing procedure.

Number of rows affected by the last statement. @ @rowcount
is set to zero by any statement which does not return rows,
such as an if statement. With cursors, @ @rowcount
represents the cumulative number of rows returned from the
cursor result set to the client, up to the last fetch request.

Name of the current database server.

Contains status information resulting from the last fetch
statement.

Version of the current version of SQL Anywhere.

Chapter 38 Watcom-SQL Language Reference

Functions in expressions

See "Watcom-SQL Functions" for a description of the functions available in
SQL Anywhere.

Subqueries in expressions

A subquery is a SELECT statement enclosed in parentheses. The SELECT
statement must contain one and only one select list item. Usually, the
subquery is allowed to return only one row. See "Search conditions" on page
907 for other uses of subqueries. A subquery can be used anywhere that a
column name can be used. For example, a subquery can be used in the select
list of another SELECT statement.

Watcom-SQL Operators

This section describes the arithmetic and string operators available in SQL
Anywhere. For information on comparison operators, see the section
"Search conditions" on page 907.

The normal precedence of operations applies. Expressions in parentheses
are evaluated first; then multiplication and division before addition and
subtraction. String concatenation happens after addition and subtraction.

expression + expression Addition. If either expression is the NULL
value, the result is the NULL value.

expression - expression Subtraction. If either expression is the NULL
value, the result is the NULL value.

- expression Negation. If the expression is the NULL value, the result is
the NULL value.

expression * expression Multiplication. If either expression is the
NULL value, the result is the NULL value.

expression / expression Division. If either expression is the NULL
value or if the second expression is 0, the result is the NULL value.

expression Il expression String concatenation (two vertical bars). If
either string is the NULL value, it is treated as the empty string for
concatenation.

905

Expressions

906

expression + expression Alternative string concatenation. When using
the + concatenation operator, you must ensure the operands are explicitly set
to character data types rather than relying on implicit data conversion.

(expression) Parentheses.

IF condition THEN expression1 [ELSE expression2] ENDIF

Evaluates to the value of expressionl if the specified search condition is
TRUE, the value of expression2 if condition is FALSE, and the NULL value
if condition is UNKNOWN. (For more information about TRUE, FALSE
and UNKNOWN conditions, see "NULL value" in the chapter "Watcom-
SQL Statements", and "Search conditions" on page 907.)

Chapter 38 Watcom-SQL Language Reference

Search conditions

Purpose

Syntax

Usage
Authorization
Side effects
See also

Description

To specify a search condition for a WHERE clause, a HAVING clause, a
CHECK clause, a JOIN clause or an IF expression.

search condition:
expression compare expression
| expression compare ANY (subquery)
| expression compare ALL (subquery)
| expression 1S [NOT] NULL
| expression [NOT] LIKE expression [ESCAPE expression]
| expression | NOT BETWEEN expression AND expression
| expression [NOT] IN (expression)
| expression [NOT] IN (subquery)
| expression [NOT] IN (value-expr1 , value-expr2|[, value-expr3] ...)
| EXISTS (subquery)
I NOT condition
| condition AND condition
| condition OR condition
| (condition')
| (condition , estimate)
| condition1S [NOT] TRUE
| condition 1S [NOT | FALSE
| condition IS [NOT] UNKNOWN

compare:
oneof=><o=<=>l=~=lk !>

Anywhere.

Must be connected to the database.
None.

Expressions, on page 899

Conditions are used as to choose a subset of the rows from a table, or in a
control statement such as an IF statement to determine control of flow.

SQL conditions do not follow boolean logic, where conditions are either true
or false. In SQL, every condition evaluates as one of TRUE, FALSE, or
UNKNOWN. This is called three valued logic. The result of a comparison is
UNKNOWN if either value being compared is the NULL value. For tables
showing how logical operators combine in three-valued logic, see the
section "Three-valued logic" on page 914.

907

Search conditions

Rows satisfy a search condition if and only if the result of the condition is
TRUE. Rows for which the condition is UNKNOWN do not satisfy the
search condition. For more information about NULL, see "NULL value" in
the chapter "Watcom-SQL Statements".

Subqueries form an important class of expression that is used in many
search conditions. For information about using subqueries in search
conditions, see "Subqueries in search conditions", next.

The different types of search condition are as follows:
"Comparison conditions" on page 908.
"BETWEEN conditions" on page 909.

"LIKE conditions" on page 909.

"IN conditions" on page 912.

"ALL or ANY conditions" on page 912.
"EXISTS conditions" on page 913.

"IS NULL conditions" on page 913.

* & & & 6 o o o

"Conditions with logical operators" on page 913.

Subqueries in search conditions

Subqueries that return exactly one column and either zero or one row can be
used in any SQL statement anywhere that a column name could be used,
including in the middle of an expression.

For example, expressions can be compared to subqueries in comparison
conditions (see "Comparison conditions", next) as long as the subquery does
not return more than one row. If the subquery (which must have one
column) returns one row, then the value of that row is compared to the
expression. If a subquery returns no rows, its value is NULL.

Subqueries that return exactly one column and any number of rows can be
used in IN conditions, ANY conditions, and ALL conditions. Subqueries
returning any number of columns and rows can be used in EXISTS
conditions. These conditions are discussed in the following sections.

Comparison conditions

The syntax for comparison conditions is as follows:

908

Chapter 38 Watcom-SQL Language Reference

... expression compare expression

where compare is a comparison operator. The following comparison
operators are available in SQL Anywhere:

operator description

= Equal to
> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

I= Not equal to

<> Not equal to

> Not greater than

I< Not less than

Comparisons are case insensitive
All string comparisons are case insensitive unless the database was
created as case sensitive.

BETWEEN conditions

The syntax for BETWEEN conditions is as follows:
... expr[NOT] BETWEEN start-expr AND end-expr

The BETWEEN condition can evaluate as TRUE, FALSE, or UNKNOWN.
Without the NOT keyword, the condition evaluates as TRUE if expr is
between start-expr and end-expr. The NOT keyword reverses the meaning
of the condition, leaving UNKNOWN unchanged.

LIKE conditions

The BETWEEN conditions is equivalent to a combination of two

inequalities:

expr>= start-expr AND expr <= end-expr

The syntax for LIKE conditions is as follows:

... expression [NOT] LIKE pattern [ESCAPE escape-expr]

909

Search conditions

Using ranges and
sets in patterns

Searching for one
of a set of
characters

Searching for one
of a range of
characters

910

The LIKE condition can evaluate as TRUE, FALSE, or UNKNOWN.

Without the NOT keyword, the condition evaluates as TRUE if expression
matches the pattern. If either expression or pattern is the NULL value, this
condition is UNKNOWN. The NOT keyword reverses the meaning of the
condition, leaving UNKNOWN unchanged.

The pattern may contain any number of wild cards. The wild cards are:

Wild card Matches

_ (underscore) Any one character

% (percent) Any string of zero or more characters
[Any single character in the specified range or set

[* Any single character not in the specified range or set

All other characters must match exactly.

For example, the search condition

name LIKE 'a%b_'

is TRUE for any row where name starts with the letter a and has the letter b
as its second last character.

If an escape-expr is specified, it must evaluate to a single character. The
character can precede a percent, an underscore, a left square bracket, or
another escape character in the pattern to prevent the special character from
having its special meaning. When escaped in this manner, a percent will
match a percent, and an underscore will match an underscore.

All patterns of length 126 characters or less are supported. Patterns of
length greater than 254 characters are not supported. Some patterns of
length between 127 and 254 characters are supported, depending on the
contents of the pattern.

Ranges and sets of characters can be given in LIKE search conditions using
square brackets.

A set of characters to look for is specified by listing the characters inside the
brackets. For example, the following condition finds the strings smith and
smyth:

LIKE 'sm(iy]th'’
A range of characters to look for is specified by giving the ends of the range,

separated by a hyphen. For example, the following condition finds the
strings bough and rough, but not tough:

Chapter 38 Watcom-SQL Language Reference

Combining
searches for
ranges and sets

Searching for one
character not in a
range

Special cases of
ranges and sets

LIKE '[a-r]ough'

The range of characters [a-z] is interpreted as "greater than or equal to a,
and less than or equal to z", where the greater than and less than operations
are carried out within the collation of the database. For information on
ordering of characters within a collation, see the chapter "Database
Collations".

The lower end of the range must precede the higher end of the range. For
example, any LIKE condition containing the expression [z-a] returns no
rows, as no character matches the [z-a] range.

Unless the database was created as a case-insensitive database, the range of
characters is case insensitive. For example, the following condition finds the
strings Bough, rough, and TOUGH:

LIKE '[a-z]ough'

If the database is created as a case-sensitive database, the search condition is
case sensitive also.

You can combine ranges and sets within a square bracket. For example, the
following condition finds the strings bough, rough, and tough:

LIKE '[a-rt]ough'

The bracket [a-mpgs-z] is interpreted as "exactly one character that is either
in the range a to m inclusive, or is p, or is g, or is in the range s to z
inclusive".

The caret character (%) is used to specify a range of characters that is
excluded from a search. For example, the following condition finds the
string fough, but not the strings rough, or bough:

LIKE '[*a-r]ough'
The caret negates the entire rest of the contents of the brackets. For
example, the bracket [Aa-mpgs-z] is interpreted as "exactly one character

that is not in the range a to m inclusive, is not p, is not ¢, and is not in the
range s to z inclusive".

Any single character in square brackets means that character. For example,
[a] matches just the character a. [*] matches just the caret character, [%]
matches just the percent character (the percent character does not act as a
wild card in this context), and [_] matches just the underscore character.
Also, [[] matches just the character /.

Other special cases are as follows:
¢ The expression [a-] matches either of the characters a or -.

¢ The expression /] is never matched and always returns no rows.

911

Search conditions

IN conditions

¢ The expressions [or [abp-q are ill-formed expressions, and give syntax
errors.

¢ You cannot use wild cards inside square brackets. The expression
[a%b] finds one of a, %, or b.

¢ You cannot use the caret character to negate ranges except as the first
character in the bracket. The expression [a*b] finds one of a, *, or b.

The syntax for IN conditions is as follows:

...expression [NOT] IN (subquery)
| expression[NOT] IN (expression)
| expression[NOT] IN (value-expr1 , value-expr2 |, value-expr3] ...

)

Without the NOT keyword, the IN conditions is TRUE if expression equals
any of the listed values, UNKNOWN if expression is the NULL value, and
FALSE otherwise. The NOT keyword reverses the meaning of the
condition, leaving UNKNOWN unchanged.

ALL or ANY conditions

912

The syntax for ANY conditions is
... expression compare ANY (subquery)

where compare is a comparison operator.

For example, an ANY condition with an equality operator:
... expression = ANY (subquery)

is TRUE if expression is equal to any of the values in the result of the
subquery, and FALSE is the expression is not NULL and does not equal any
of the columns of the subquery. The ANY condition is UNKNOWN if
expression is the NULL value unless the result of the subquery has no rows,
in which case the condition is always FALSE.

The keyword SOME can be used instead of ANY.

Chapter 38 = Watcom-SQL Language Reference

EXISTS conditions

The syntax for EXISTS conditions is as follows:
... EXISTS(subquery)

The EXISTS condition is TRUE if the subquery result contains at least one
row, and FALSE if the subquery result does not contain any rows. The
EXISTS condition cannot be UNKNOWN.,

IS NULL conditions

The syntax for IS NULL conditions is as follows:
expression IS [NOT] NULL

Without the NOT keyword, the IS NULL condition is TRUE if the
expression is the NULL value, and as FALSE otherwise. The NOT keyword
reverses the meaning of the condition.

Conditions with logical operators

NOT conditions

Search conditions can be combined using AND, OR and NOT.
Conditions are combined using AND as follows:
... condition1 AND condition2

The combined condition is TRUE if both conditions are TRUE, FALSE if
either condition is FALSE, and UNKNOWN otherwise.

Conditions are combined using OR as follows:
... condition1 OR condition2

The combined condition is TRUE if either condition is TRUE, FALSE if
both conditions are FALSE, and UNKNOWN otherwise.

The result of a comparison is UNKNOWN if either value being compared is
the NULL value. Rows satisfy a search condition if and only if the result of
the condition is TRUE.

The syntax for NOT conditions is as follows:
... NOT condition1

913

Search conditions

The NOT condition is TRUE if conditionl is FALSE, FALSE if conditionl
is TRUE and UNKNOWN if condition] is UNKNOWN.

Truth value conditions

The syntax for truth value conditions is as follows:
... IS [NOT] truth-value

Without the NOT keyword, the condition is TRUE if the condition evaluates
to the supplied truth-value, which must be one of TRUE, FALSE, or
UNKNOWN. Otherwise, the value is FALSE. The NOT keyword reverses
the meaning of the condition, leaving UNKNOWN unchanged.

Three-valued logic

The following tables show how the AND, OR, NOT, and IS logical

914

operators of SQL work in three-valued logic.

AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN
OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN
NOT TRUE FALSE UNKNOWN
FALSE TRUE UNKNOWN
IS TRUE FALSE UNKNOWN
TRUE TRUE FALSE FALSE
FALSE FALSE TRUE FALSE
UNKNOWN FALSE FALSE TRUE

Chapter 38 Watcom-SQL Language Reference

Comments in Watcom-SQL

Comments are used to attach explanatory text to SQL statements or
statement blocks. Comments are not executed by the database engine.

Several comment indicators are available in SQL Anywhere.

-- (Double hyphen.) Any remaining characters on the line are ignored by
the database engine. This is the SQL/92 comment indicator.

% (Percent sign.) The percent sign has the same meaning as the double
hyphen.

// (Double slash.) The double slash has the same meaning as the double
hyphen.

I* ... I (Slash-asterisk.) Any characters between the two comment
markers are ignored. The two comment markers may be on the same or
different lines. Comments indicated in this style can be nested.

Transact-SQL compatibility
The double-hyphen and the slash-asterisk comment styles are compatible
with Transact-SQL.

The following examples illustrate the use of comments:

CREATE FUNCTION fullname (firstname CHAR(30),
lastname CHAR(30))

RETURNS CHAR(61)

-- fullname concatenates the firstname and lastname
-- arguments with a single space between.

BEGIN
DECLARE name CHAR(61) ;
SET name = firstname || ' ' || lastname;
RETURN (name) ;

END

/*

Lists the names and employee IDs of employees
who work in the sales department.

*/

CREATE VIEW SalesEmployee AS

SELECT emp_id, emp_lname, emp_fname

FROM "dba".employee

WHERE dept_id = 200

915

CHAPTER 39

SQL Anywhere Data Types

About this chapter This chapter describes the data types supported by SQL Anywhere.

Contents Topic Page
Character data types 918
Numeric data types 920
Date and time data types 922
Binary data types 926
User-defined data types 927
Data type conversions 929

& For more ¢ The different kinds of data type are discussed in the following sections.

information

¢ Data type conversions are described in the section "Data type
conversions" on page 929.

¢ Some of the data types listed have Transact-SQL equivalents. These
equivalents are not listed here. For a description of Transact-SQL data
types supported by SQL Anywhere, see the chapter "Using Transact-
SQL with SQL Anywhere".

917

Character data types

Character data types

Purpose

Syntax

Description

Notes

918

For storing strings of letters, numbers and symbols.

Character data types:
CHAR [(max-length)]
| CHARACTER [(max-length)]
| CHARACTER VARYING [(max-length)]
| LONG VARCHAR
| VARCHAR [(max-length)]

CHAR [(max-length)] Character data of maximum length max-length. If
max-length is omitted, the default is 1. The maximum size allowed is
32,767.

& See the notes below on character data representation in the database,
and on storage of long strings.

CHARACTER [(max-length)] Same as CHAR[(max-length)].
CHARACTER VARYING[(max-length)] Same as CHAR[(max-length)].

LONG VARCHAR Arbitrary length character data. The maximum size is
limited by the maximum size of the database file (currently 2 gigabytes).

VARCHAR [(max-length)] Same as CHAR[(max-length)].

Character data is placed in the database using the exact binary
representation that is passed from the application. This usually means that
character data is stored in the database with the binary representation of the
current code page. The code page is the character set representation used by
IBM-compatible personal computers. You can find documentation about
code pages in the documentation for your operating system.

All code pages are the same for the first 128 characters. If you use special
characters from the top half of the code page (accented international
language characters), you must be careful with your databases. In particular,
if you copy the database to a different machine using a different code page,
those special characters will be retrieved from the database using the
original code page representation. With the new code page, they will appear
on the screen to be the wrong characters.

This problem also appears if you have two clients using the same multi-user
server, but running with different code pages. Data inserted or updated by
one client may appear incorrect to another.

Chapter 39 SQL Anywhere Data Types

Long strings

This problem is quite complex. If any of your applications use the extended
characters in the upper half of the code page, make sure that all clients and
all machines using the database use the same or a compatible code page.

SQL Anywhere treats CHAR, VARCHAR, and LONG VARCHAR columns
all as the same type. Values up to 254 characters are stored as short strings,
which are stored with a preceding length byte. Any values that are longer
than 255 bytes are considered long strings. Characters after the 255th are
stored separate from the row containing the long string value.

There are several functions (see "Watcom-SQL Functions") that will ignore
the part of any string past the 255th character. They are soundex, similar,
and all of the date functions. Also, any arithmetic involving the conversion
of a long string to a number will work on only the first 255 characters. It
would be extremely unusual to run in to one of these limitations.

All other functions and all other operators will work with the full length of
long strings.

919

Numeric data types

Numeric data types

Purpose

Syntax

Description

920

For storing numerical data.

Numeric data types
DECIMAL [(precision|[, scale])]
| DOUBLE
| FLOAT [(precision)]
I INT
| INTEGER
I NUMERIC [(precision| , scale])]
| REAL
| SMALLINT
| TINYINT

DECIMAL [(precision[,scale])] A decimal number with precision total
digits and with scale of the digits after the decimal point. The defaults are
scale = 6 and precision = 30.

These defaults can be changed with the SET statement (see "SET OPTION
statement" in the chapter "Watcom-SQL Statements").

The storage required for a decimal number can be computed as:
2 + int((before+l) / 2) + int((after+1l)/2)

where int takes the integer portion of its argument, and before and after are
the number of significant digits before and after the decimal point. Note that
the storage is based on the value being stored, not on the maximum
precision and scale allowed in the column.

DOUBLE A double precision floating-point number stored in 8 bytes. The
range of values is 2.22507385850720160e-308 to
1.79769313486231560e+308. Values held as DOUBLE are accurate to 15
significant digits, but may be subject to round-off error beyond the fifteenth
digit.

FLOAT [(precision)] If precision is not supplied, the FLOAT data
type is the same as the REAL data type. If precision supplied, then the
FLOAT data type is the same as the REAL or DOUBLE data type,
depending on the value of the precision. The cutoff between REAL and
DOUBLE is platform dependent.

When a column is created using the FLOAT (precision) data type, columns
on all platforms are guaranteed to hold the values to at least the specified
minimum precision. In contrast, REAL and DOUBLE do not guarantee a
platform-independent minimum precision.

Chapter 39 SQL Anywhere Data Types

Notes

INT Signed integer of maximum value 2,147,483,647 requiring 4 bytes of
storage.

INTEGER Same as INT.
NUMERIC [(precision[,scale])] Same as DECIMAL.

REAL A single precision floating-point number stored in 4 bytes. The
range of values is 1.175494351e-38 to 3.402823466¢e+38. Values held as
REAL are accurate to 6 significant digits, but may be subject to round-off
error beyond the sixth digit.

SMALLINT Signed integer of maximum value 32,767 requiring 2 bytes of
storage.

TINYINT Signed integer of maximum value 255 requiring 2 bytes or 4
bytes of storage.

¢ The INTEGER, NUMERIC and DECIMAL data types are sometimes
called exact numeric data types, in contrast to the approximate numeric
data types FLOAT, DOUBLE, and REAL. The exact numeric data
types are those for which precision and scale values can be specified,
while approximate numeric data types are stored in a predefined
manner. Columns holding exact numeric data are accurate after
arithmetic operations to the least significant digit specified.

¢ In SQL Anywhere TINYINT columns should not be fetched into
Embedded SQL variables defined as char or unsigned char, since the
result is an attempt to convert the value of the column to a string and
then assign the first byte to the variable in the program.

¢ Before release 5.5, hexadecimal constants greater than four bytes were
treated as string constants, and others were treated as integers. The new
default behavior is to treat them as binary type constants. To use the
historical behavior, set the TSQL_HEX_CONSTANTS database option
to OFF.

921

Date and time data types

Date and time data types

Purpose For storing dates and times.
Syntax Date and time data types
DATE
| TIME
| TIMESTAMP
Description DATE A calendar date, such as a year, month and day. The year can be

from the year 0001 to 9999. For historical reasons, a DATE column can
also contain an hour and minute, but the TIMESTAMP data type is now
recommended for anything with hours and minutes. A DATE value requires
4 bytes of storage.

TIME time of day, containing hour, minute, second and fraction of a
second. The fraction is stored to 6 decimal places. A TIME value requires 8
bytes of storage. (ODBC standards restrict TIME data type to an accuracy of
seconds. For this reason you should not use TIME data types in WHERE
clause comparisons that rely on a higher accuracy than seconds.)

TIMESTAMP point in time, containing year, month, day, hour, minute,
second and fraction of a second. The fraction is stored to 6 decimal places.
A TIMESTAMP value requires 8 bytes of storage.

Although the range of possible dates for the TIMESTAMP data type is the
same as the DATE type, 0001 to 9999, the useful range of TIMESTAMP
date types is from 1600-02-28 23:59:59 to 7911-01-01 00:00:00. Prior to,
and after this range the time portion of the TIMESTAMP may be
incomplete.

Sending dates and times to the database

Dates and times may be sent to the database in one of the following ways:
¢ Using any interface, as a string

¢ Using ODBC, as a TIMESTAMP structure

¢ Using Embedded SQL, as a SQLDATETIME structure

When a time is sent to the database as a string (for the TIME data type) or
as part of a string (for TIMESTAMP or DATE data types), the hours,
minutes, and seconds must be separated by colons in the format
hh:mm:ss.sss, but can appear anywhere in the string. The following are
valid and unambiguous strings for specifying times:

922

Chapter 39 SQL Anywhere Data Types

21:35 -- 24 hour clock if no am or pm specified
10:00pm -- pm specified, so interpreted as 12 hour
clock

10:00 -- 10:00am in the absence of pm

10:23:32.234 -- seconds and fractions of a second
included

When a date is sent to the database as a string, conversion to a date is
automatic. The string can be supplied in one of two ways:

¢ Asastring of format yyyy/mm/dd or yyyy-mm-dd, which is interpreted
unambiguously by the database

¢ As a string interpreted according to the DATE_ORDER database
option

Unambiguous dates and times

Dates in the format yyyy/mm/dd or yyyy-mm-dd are always recognized
unambiguously as dates regardless of the DATE_ORDER setting. Other
characters can be used as separators instead of "/” or "-"; for example, " ?", a
space character, or ",". You should use this format in any context where
different users may be employing different DATE_ORDER settings. For
example, in stored procedures, use of the unambiguous date format prevents
misinterpretation of dates according to the user's DATE_ORDER setting.

Also, a string of the form hh:mm:ss.sss is interpreted unambiguously as a
time.

For combinations of dates and times, any unambiguous date and any
unambiguous time yield an unambiguous date-time value. Also, the form

YYYY-MM-DD HH.MM.SS.SSSSSS

is an unambiguous date-time value. Periods can be used in the time only in
combination with a date.

In other contexts, a more flexible date format can be used. SQL Anywhere
can interpret a wide range of strings as formats. The interpretation depends
on the setting of the database option DATE_ORDER. The DATE_ORDER
database option can have the value 'MDY", 'YMD', or ' DMY’ (see "SET
OPTION statement" in the chapter "Watcom-SQL Statements"). For
example, the following statement sets the DATE_ORDER option to 'DMY":

SET OPTION DATE_ORDER = 'DMY' ;

923

Date and time data types

The default DATE_ORDER setting is 'YMD'. The SQL Anywhere ODBC
driver sets the DATE_ORDER option to "'YMD' whenever a connection is
made. The value can still be changed using the SET OPTION statement.

The database option DATE_ORDER determines whether the string
10/11/12 is interpreted by the database as Oct 11 1912, Nov 12 1910, or
Nov 10 1912. The year, month, and day of a date string should be separated
by some character (for example /, -, or space) and appear in the order
specified by the DATE_ORDER option. The year can be supplied as either 2
or 4 digits, with 2 digit years defaulting to the 20th century. The month can
be the name or number of the month. The hours and minutes are separated
by a colon, but can appear anywhere in the string.

With an appropriate setting of DATE_ORDER, the following strings are all
valid dates:

92-05-23 21:35

92/5/23

1992/05/23

May 23 1992

23-May-1992

Tuesday May 23, 1992 10:00pm

If a string contains only a partial date specification, default values are used
to fill out the date. The following defaults are used:

year This year
month No default

day 1 (useful for month fields; for example, May 1992' will be the date
'1992-05-01 00:00')

hour, minute, second, fraction 0

Retrieving dates and times from the database

Dates and times may be retrieved from the database in one of the following
ways:

¢ Using any interface, as a string
¢ Using ODBC, as a TIMESTAMP structure
¢ Using embedded SQL, as a SQLDATETIME structure

924

Chapter 39 SQL Anywhere Data Types

When a date or time is retrieved as a string, it is retrieved in the format
specified by the database options DATE_FORMAT, TIME_FORMAT and
TIMESTAMP_FORMAT. For descriptions of these options, see "SET
OPTION statement" in the chapter "Watcom-SQL Statements".

& For information on functions dealing with dates and times, see "Date
and time functions" in the chapter "Watcom-SQL Functions". The following
arithmetic operators are allowed on dates:

¢ timestamp +integer Add the specified number of days to a date or
timestamp.

¢ timestamp - integer Subtract the specified number of days from a
date or timestamp.

¢ date-date Compute the number of days between two dates or
timestamps.

¢ date +time Create a timestamp combining the given date and time.

Date and time comparisons

The DATE data type also contains a time. If the time is not specified when a
date is entered into the database, the time defaults to 0:00 or 12:00am
(midnight). Any date comparisons always involve the times as well. A
database date value of '1992-05-23 10:00' will not be equal to the constant
'1992-05-23'. The DATEFORMAT function or one of the other date
functions can be used to compare parts of a date and time field. For
example:

DATEFORMAT (invoice_date, 'yyyy/mm/dd') = '1992/05/23"

If a database column requires only a date, client applications should ensure
that times are not specified when data is entered into the database. This
way, comparisons with date-only strings will work as expected.

If you wish to compare a date to a string as a string, you must use the
DATEFORMAT function or CAST function to convert the date to a string
before comparing.

925

Binary data types

Binary data types

Purpose

Syntax

Description

926

For storing binary data, including images and other information that is not
interpreted by the database.

Binary data types:
BINARY [(max-length)]
| LONG BINARY

BINARY [(max-length)] Binary data of maximum length size (in bytes).
If size is omitted, the default is 1. The maximum size allowed is 32,767.
The BINARY data type is identical to the CHAR data type except when
used in comparisons. BINARY values will be compared exactly while
CHAR values are compared without respect to upper/lowercase (depending
on the case-sensitivity of the database) or accented characters.

LONG BINARY Arbitrary length binary data. The maximum size is
limited by the maximum size of the database file (currently 2 gigabytes).

Chapter 39 SQL Anywhere Data Types

User-defined data types

Purpose

Simple user-
defined data types

User-defined data types are aliases for built-in data types, including
precision and scale values where applicable, and optionally including
DEFAULT values and CHECK conditions.

User-defined data types, also called domains, allow columns throughout a
database to be automatically defined on the same data type, with the same
NULL or NOT NULL condition, with the same DEFAULT setting, and with
the same CHECK condition. This encourages consistency throughout the
database.

User-defined data types are created using the CREATE DATATYPE
statement For full description of the syntax, see "CREATE DATATYPE
statement" in the chapter "Watcom-SQL Statements".

The following statement creates a data type named street_address, which is
a 35-character string.

CREATE DATATYPE street_address CHAR(35)

CREATE DOMALIN can be used as an alternative to CREATE
DATATYPE, and is recommended, as CREATE DOMAIN is the syntax
used in the draft SQL/3 standard.

Resource authority is required to create data types. Once a data type is
created, the user ID that executed the CREATE DATATYPE statement is
the owner of that data type. Any user can use the data type, and unlike other
database objects, the owner name is never used to prefix the data type name.

The street_address data type may be used in exactly the same way as any
other data type when defining columns. For example, the following table
with two columns has the second column as a street_address column:

CREATE TABLE twocol (

id INT,

street street_address

)

User-defined data types can be dropped by their owner or by the DBA using
the DROP DATATYPE statement:

DROP DATATYPE street_address

This statement can be carried out only if the data type is not used in any
table in the database.

927

User-defined data types

Constraints and
defaults with user-
defined data types

928

Many of the attributes associated with columns, such as allowing NULL
values, having a DEFAULT value, and so on, can be built into a user-
defined data type. Any column that is defined on the data type automatically
inherits the NULL setting, CHECK condition, and DEFAULT values. This
allows uniformity to be built into columns with a similar meaning
throughout a database.

For example, many primary key columns in the sample database are integer
columns holding ID numbers. The following statement creates a data type
that may be useful for such columns:

CREATE DATATYPE id INT

NOT NULL

DEFAULT AUTOINCREMENT
CHECK(@col > 0)

Any column created using the data type id is not allowed to hold NULLs,
defaults to an autoincremented value, and must hold a positive number. Any
identifier could be used instead of col in the @col variable.

The attributes of the data type can be overridden if needed by explicitly
providing attributes for the column. A column created on data type id with
NULL values explicitly allowed does allow NULLs, regardless of the setting
in the id data type.

Chapter 39 SQL Anywhere Data Types

Data type conversions

Type conversions happen automatically, or they can be explicitly requested
using the CAST or CONVERT function.

If a string is used in a numeric expression or as an argument to a function
expecting a numeric argument, the string is converted to a number before
use.

If a number is used in a string expression or as a string function argument,
then the number is converted to a string before use.

All date constants are specified as strings. The string is automatically
converted to a date before use.

There are certain cases where the automatic database conversions are not

appropriate.
'12/31/90'" + 5 -- SQL Anywhere tries to convert the
string to a number
'a' > 0 -- SQL Anywhere tries to convert 'a' to a
number

The CAST or CONVERT functions can be used to force type conversions.
For information about the CAST and CONVERT functions, see "Data type
conversion functions" in the chapter "Watcom-SQL Functions".

The following functions can also be used to force type conversions (see
"Watcom-SQL Functions").

DATE(value) Converts the expression into a date, and removes any
hours, minutes or seconds. Conversion errors may be reported.

STRING(value) similar to CAST(value AS CHAR), except that string(
NULL) is the empty string ("), while CAST(NULL AS CHAR) is the
NULL value.

VALUE+0.0 Equivalent to CAST(value AS DECIMAL).

929

Year 2000 compliance

Year 2000 compliance

The problem of handling dates, in particular year values beyond the year
2000, is a significant issue for the computer industry.

This section examines the year 2000 compliance of SQL Anywhere. It
illustrates how date values are handled internally by SQL Anywhere, and
how SQL Anywhere handles ambiguous date information, such as the
conversion of a two digit year string value.

Users of Sybase SQL Anywhere and its predecessors can be assured that
dates are handled and stored internally in a manner not adversely effected
by the transition from the 20th century to the 21st century.

Consider the following measurements of SQL Anywhere's year 2000
compliance:

¢ SQL Anywhere always returns correct values for any legal arithmetic
and logical operations on dates, regardless of whether the calculated
values span different centuries.

¢ Atall times SQL Anywhere's internal storage of dates explicitly
includes the century portion of a year value.

¢ SQL Anywhere's operation is unaffected by any return value, including
the current date.

¢ Date values can always be outputted in full century format.

Many of the date-related topics summarized in this section are explained in
greater detail in other parts of the documentation.

How dates are stored

Dates containing year values are used internally and stored in SQL
Anywhere databases using either of the following data types:

Data type Contains Stored in Range of
possible
values

DATE Calendar date 4-bytes 0001-01-01 to

(year, month, day) 9999-12-31

930

Chapter 39 SQL Anywhere Data Types

Data type Contains Stored in Range of
possible
values

TIMESTAMP Time stamp (year, | 8-bytes 0001-01-01 to

month, day, hour 9999-12-31

minute, second,
and fraction of
second accurate to
6 decimal places.)

(precision of
time portion of
TIMESTAMP is
dropped prior to
1600-02-28
23:59:59 and
after 7911-01-01
00:00:00)

&~ For more information on SQL Anywhere date and time data types see
"Date and time data types", on page 922.

Sending and retrieving date values

Date values are stored within SQL Anywhere as either a DATE or
TIMESTAMP data type, but they are passed to and retrieved from SQL
Anywhere using either of three methods:

¢ As astring, using any SQL Anywhere programming interface.
¢ As a TIMESTAMP structure using ODBC.
¢ Asa SQLDATETIME structure using Embedded SQL.

A string containing a date value is considered unambiguous and is

automatically converted to a DATE or TIMESTAMP data type without
potential for misinterpretation if it is passed using the following format:
yyyy-mm-dd (the "-" dash separator is one of several characters that are

permitted).

Date formats other than yyyy-mm-dd can be used by setting the
DATE_FORMAT database option (see "SET OPTION statement" in the

chapter "Watcom-SQL Statements").

& For more information on unambiguous date formats, see
"Unambiguous dates and times", on page 923.

&> For more information on the ODBC TIMESTAMP structure see the
Microsoft Open Database Connectivity SDK, or "Sending dates and times to
the database", page 922.

931

Year 2000 compliance

Used in the development of C programs, an embedded SQL
SQLDATETIME structure's year value is a 16-bit signed integer.

& For more information on the SQLDATETIME data type, see
"Embedded SQL interface data types" in the chapter "The Embedded SQL
Interface".

Leap years

The year 2000 is also a leap year, with an additional day in the month of
February. SQL Anywhere uses a globally accepted algorithm for
determining which years are leap years. Using this algorithm, a year is
considered a leap year if it is divisible by four, unless the year is a century
date (such as the year 1900), in which case it is a leap year if it is divisible
by 400.

SQL Anywhere handles all leap years correctly. For example:

The following SQL statement results in a return value of "Tuesday":

SELECT DAYNAME ('2000-02-29");

SQL Anywhere accepts Feb 29, 2000 — a leap year — as a date and using
this date determines the day of the week on which that date occurs.

However, the following statement is rejected by SQL Anywhere:
SELECT DAYNAME ('2001-02-29");

This statement results in an error (cannot convert '2001-02-29' to a date)
because Feb 29 does not exist in the year 2001, which it does not.

Ambiguous string to date conversions

SQL Anywhere automatically converts a string into a date when a date
value is expected, even if the year is represented in the string by only two
digits.

If the century portion of a year value is omitted, SQL. Anywhere's method of
conversion is determined by the NEAREST_CENTURY database option.

The NEAREST_CENTURY database option is a numeric value that acts as
a break point between 1900 date values and 2000 date values.

Two digit years less than the NEAREST_CENTURY value are converted to
20yy, while years greater than or equal to the value are converted to 19yy.

932

Chapter 39 SQL Anywhere Data Types

Ambiguous date
conversion
example

If this option is not set, the default setting of 0 is assumed, thus adding 1900
to two digit year strings and placing them in the 20th century.

This NEAREST_CENTURY option was introduced in SQL Anywhere
Release 5.5.

The following statement creates a table that can be used to illustrate the
conversion of ambiguous date information in SQL Anywhere.
CREATE TABLE T1 (Cl DATE);

The table T1 contains one column, C1, of the type DATE.

The following statement inserts a date value into the column C1. SQL
Anywhere automatically converts a string that contains an ambiguous year
value, one with two digits representing the year but nothing to indicate the

century.
INSERT INTO T1 VALUES('00-01-01");
By default, the NEAREST_CENTURY option is set to 0, thus SQL

Anywhere converts the string into the date 1900-01-01. The following
statement verifies the result of this insert.

SELECT * FROM T1;
Changing the NEAREST_CENTURY option using the following statement
alters the conversion process.

SET OPTION NEAREST_CENTURY = 25;
When NEAREST_CENTURY option is set to 25, executing the previous
insert using the same statement will create a different date value:

INSERT INTO T1 VALUES('00-01-01');
The above statement now results in the insertion of the date 2000-01-01.
Use the following statement to verify the results.

SELECT * FROM T1;

Date to string conversions

SQL Anywhere provides several functions for converting SQL. Anywhere
date and time values into a wide variety of strings and other expressions. It
is possible in converting a date value into a string to reduce the year portion
into a two digit number representing the year, thereby losing the century
portion of the date.

933

Year 2000 compliance

Wrong century
values

934

Consider the following statement, which incorrectly converts a string
representing the date Jan 1, 2000 into a string representing the date Jan 1,
1900 even though no database error occurs.
SELECT DATEFORMAT (
DATEFORMAT (' 2000-01-01', 'Mmm dd/vy'),
'yyyy-Mmm-dd')
AS Wrong_year;
Although the unambiguous date string 2000-01-01 is automatically and
correctly converted by SQL Anywhere into a date value, the Mmm dd/yy'
formatting of the inner, or nested DATEFORMAT function drops the
century portion of the date when it is converted back to a string and passed
to the outer DATEFORMAT function.

Because the database option NEAREST_CENTURY, in this case, is set to 0
the outer DATEFORMAT function converts the string representing a date
with a two digit year value into a year in the 20th century.

& For more information about ambiguous string conversions, see
" Ambiguous string to date conversions", on page 932.

&> For more information on date and time functions, see "Date and time
functions" in the chapter "Watcom-SQL Functions".

CHAPTER 40
Watcom-SQL Functions

About this chapter

Contents

&~ For more
information

This chapter describes the built-in functions supported by SQL Anywhere.
Functions are used to return information from the database. They are
allowed anywhere an expression is allowed.

NULL value
Unless otherwise stated, any function that receives the NULL value as a
parameter returns a NULL value.

Topic Page
Aggregate functions 936
Numeric functions 938
String functions 941
Date and time functions 945
Data type conversion functions 951
System functions 953
Miscellaneous functions 965

Some of the functions listed have Transact-SQL equivalents that are not
listed here. For a description of Transact-SQL functions supported by SQL
Anywhere, see the chapter "Using Transact-SQL with SQL Anywhere".

935

Aggregate functions

Aggregate functions

Purpose

Syntax

See also

Description

936

Aggregate functions summarize data over a group of rows from the
database.

Aggregate function:

AVG (aggregate-parm)

| COUNT (*)

| COUNT (aggregate-parm)
| LIST (aggregate-parm)

I MAX (aggregate-parm)

| MIN (aggregate-parm)

| SUM (aggregate-parm)

aggregate-parm:
DISTINCT column-name
| expression
Numeric functions
String functions
Date and time functions
Data type conversion functions
System functions
Miscellaneous functions

Aggregate functions summarize data over a group of rows from the
database. The groups are formed using the GROUP BY clause of the
SELECT statement. Aggregate functions are only allowed in the select list
and in the HAVING and ORDER BY clauses of a SELECT statement.

AVG(numeric-expr) Computes the average of numeric-expr for each
group of rows. This average does not include rows where the expression is
the NULL value. Returns the NULL value for a group containing no rows.

AVG(DISTINCT column-name) Computes the average of the unique
values in column-name. This is of limited usefulness, but is included for
completeness.

COUNT(*) Returns the number of rows in each group.

COUNT(expression) Returns the number of rows in each group where
the expression is not the NULL value.

COUNT(DISTINCT column-name) Returns the number of different
values in the column with name column-name. Rows where the value is the
NULL value are not included in the count.

Chapter 40 Watcom-SQL Functions

LIST(string-expr) Returns a string containing a comma-separated list
composed of all the values for string-expr in each group of rows. Rows
where string-expr is the NULL value are not added to the list.

LIST(DISTINCT column-name) Returns a string containing a comma-
separated list composed of all the different values for string-expr in each
group of rows. Rows where string-expr is the NULL value are not added to
the list.

MAX(expression) Returns the maximum expression value found in
each group of rows. Rows where expression is the NULL value are ignored.
Returns the NULL value for a group containing no rows.

MAX(DISTINCT column-name) Returns the same as MAX(expression),
and is included for completeness.

MIN(expression) Returns the minimum expression value found in each
group of rows. Rows where expression is the NULL value are ignored.
Returns the NULL value for a group containing no rows.

MIN(DISTINCT column-name) Returns the same as MIN(expression),
and is included for completeness.

SUM(expression) Returns the total of expression for each group of
rows. Rows where the expression is the NULL value are not included.
Returns NULL for a group containing no rows.

SUM(DISTINCT column-name) Computes the sum of the unique values
for numeric-expr for each group of rows. This is of limited usefulness, but is
included for completeness.

937

Numeric functions

Numeric functions

Purpose Numeric functions perform mathematical operations on numerical data
types or return numeric information.

Syntax Numeric function:
ABS (numeric-expr)
| ACOS (numeric-expr)
| ASIN (numeric-expr)
| ATAN (numeric-expr)
| ATAN2 (numeric-expr, numeric-expr)
| CEILING (numeric-expr)
| COS (numeric-expr)
| COT (numeric-expr)
| DEGREES (numeric-expr)
| EXP (numeric-expr)
| FLOOR (numeric-expr)
| LOG (numeric-expr)
| LOG10 (numeric-expr)
| MOD (dividend, divisor)
[PI(*)
| POWER (numeric-expr, numeric-expr)
| RADIANS (numeric-expr)
| RAND ([integer-expn])
| REMAINDER (numeric-expr, numeric-expr)
| ROUND (numeric-expr, integer-expr)
| SIGN (numeric-expr)
| SIN (numeric-expr)
| SQRT (numeric-expr)
| TAN (numeric-expr)
| "TRUNCATE" (numeric-expr, integer-expr)

See also Aggregate functions
String functions
Date and time functions
Data type conversion functions
System functions
Miscellaneous functions

Description ABS(numeric-expr) Returns the absolute value of numeric-expr.

ACOS(numeric-expr) Returns the arc-cosine of numeric-expr in
radians.

ASIN(numeric-expr) Returns the arc-sine of numeric-expr in radians.

938

Chapter 40 = Watcom-SQL Functions

ATAN(numeric-expr) Returns the arc-tangent of numeric-expr in
radians.

ATAN2(numeric-expr1, numeric-expr2) Returns the arc-tangent of
numeric-exprl/numeric-expr2 in radians.

CEILING(numeric-expr) Returns the ceiling (smallest integer not less
than) of numeric-expr.

COS(numeric-expr) Returns the cosine of numeric-expr, expressed in
radians.

COT(numeric-expr) Returns the cotangent of numeric-expr, expressed
in radians.

DEGREES(numeric-expr) Converts numeric-expr, from radians to
degrees. :

EXP(numeric-expr) Returns the exponential function of numeric-expr.

FLOOR(numeric-expr) Returns the floor (largest integer not greater
than) of numeric-expr.

LOG(numeric-expr) Returns the logarithm of numeric-expr.
LOG10(numeric-expr) Returns the logarithm base 10 of numeric-expr.

MOD(dividend, divisor) Returns the remainder when dividend is
divided by divisor. Division involving a negative dividend will give a
negative or zero result. The sign of the divisor has no effect.

PI(*) Returns the numeric value PI.

POWER (numeric-expr1, numeric-expr2) Raises numeric-exprl to the
power numeric-expr2.

RADIANS (numeric-expr) Converts numeric-expr, from degrees to
radians.

RAND ([integer-expr]) Returns a random number in the interval O to
1, with integer-expr as an optional seed.

REMAINDER(dividend, divisor) Same as the MOD function.

ROUND (numeric-expr, integer-expr) Rounds numeric-expr to
integer-expr places after the decimal point. A positive integer determines
the number of significant digits to the right of the decimal point; a negative
integer, the number of significant digits to the left of the decimal point.

SIGN(numeric-expr) Returns the sign of numeric-expr.

939

Numeric functions

940

SIN(numeric-expr) Returns the sine of numeric-expr, expressed in
radians.

SQRT(numeric-expr) Returns the square root of numeric-expr.

TAN(numeric-expr) Returns the tangent of numeric-expr, expressed in
radians.

"TRUNCATE" (numeric-expr, integer-expr) Truncates numeric-expr
at integer-expr places after the decimal point. A positive integer determines
the number of significant digits to the right of the decimal point; a negative
integer, the number of significant digits to the left of the decimal point.

The double quotes are required because of a keyword conflict with the
TRUNCATE TABLE statement.

Chapter 40 Watcom-SQL Functions

String functions

Syntax

See also

Description

Purpose

String functions perform conversion, extraction or manipulation operations
on strings or return information about strings.

‘When working in a multi-byte character set, check carefully whether the
function being used returns information concerning characters or bytes.

String function:
ASCII (string-expr)
| BYTE_LENGTH (string-expr)
| BYTE_SUBSTR (string-expr, integer-expr [, integer-expr])
| CHAR (string-expr)
| DIFFERENCE (string-expr, string-expr)
| INSERTSTR (numeric-expr, string-expr, string-expr)
| LCASE (string-expr)
| LEFT (string-expr, numeric-expr)
| LENGTH (string-expr)
| LOCATE (string-expr, string-expr [, numeric-expr])
| LTRIM (string-expr)
| PATINDEX ('%pattern%', string_expr)
| REPEAT (string-expr, numeric-expr)
| RIGHT (string-expr, numeric-expr)
| RTRIM (string-expr)
| SIMILAR (string-expr, string-expr)
| SOUNDEX (string-expr)
| SPACE (integer-expr)
| STRING (string-expr|, ...])
| SUBSTR (string-expr, integer-expr [, integer-expn)
| TRIM (string-expr)
| UCASE (string-expr)

Aggregate functions

Numeric functions

Date and time functions

Data type conversion functions
System functions
Miscellaneous functions

ASCII(string-expr) Returns the integer ASCII value of the first byte in
string-expr, or 0 for the empty string.

BYTE_LENGTH(string-expr) Returns the number of bytes in the string
string-expr.

941

String functions

942

BYTE_SUBSTR(string-expr, start [, length]) Returns the substring of
string-expr starting at the given start position (origin 1), in bytes. If the
length is specified, the substring is restricted to that number of bytes. Both
start and length can be negative. A negative starting position specifies a
number of bytes from the end of the string instead of the beginning. A
positive length specifies that the substring ends length bytes to the right of
the starting position, while a negative length specifies that the substring
ends length bytes to the left of the starting position. Using appropriate
combinations of negative and positive numbers, you can get a substring
from either the beginning or end of the string.

CHAR(numeric-expr) Returns the character with the ASCII value
numeric-expr. The character in the current character set corresponding to
the supplied numeric expression modulo 256 is returned. If you are using
multi-byte character sets, CHAR may not return a valid character.

DIFFERENCE(string-expri, string-expr2) Returns the difference in
the soundex values of string-exprl and string-expr2.

INSERTSTR(numeric-expr, string-expr1, string-expr2) Inserts string-
expr2 in string-exprl at character position numeric-expr.

LCASE(string-expr) Converts all characters in string-expr to lower
case.

LEFT(string-expr, numeric-expr) Returns the leftmost numeric-expr
characters of string-expr.

LENGTH(string-expr) Returns the number of characters in the string
string-expr. If string-expr is of binary data type, the LENGTH function
behaves as BYTE_LENGTH.

LOCATE(string-expr1, string-expr2 [, numeric-expr]) Returns the
character offset (base 1) into the string string-exprl of the first occurrence
of the string string-expr2. If numeric-expr is specified, the search will start
at that offset into the string.

The first string can be a long string (longer than 255 bytes), but the second
is limited to 255 bytes. If a long string is given as the second argument, the
function returns a NULL value. If the string is not found, O is returned.
Searching for a zero-length string will return 1. If any of the arguments are
NULL, the result is NULL.

LTRIM(string-expr) Returns string-expr with leading blanks removed.

Chapter 40 Watcom-SQL Functions

PATINDEX('%pattern%', string-expr) Returns an integer representing
the starting position in characters of the first occurrence of pattern in the
specified string expression, or a zero if pattern is not found. If the leading
percent wild card is omitted, PATINDEX returns one (1) if pattern occurs at
the beginning of the string, and zero if not. If the trailing percent wild card
is omitted, PATINDEX returns one (1) if pattern occurs at the end of the
string, and zero if not. If pattern starts with a percent wild card, then the
two leading percent wild cards are treated as one.

REPEAT(string-expr, integer-expr) Returns a string comprised of
integer-expr instances of string-expr, concatenated together.

RIGHT(string-expr, numeric-expr) Returns the rightmost numeric-
expr characters of string-expr.

RTRIM(string-expr Returns string-expr with trailing blanks removed.

SIMILAR(string-expr1, string-expr2) Returns an integer between 0 and
100 representing the similarity between the two strings. The result can be
interpreted as the percentage of characters matched between the two strings
(100 percent match if the two strings are identical).

This function can be very useful for correcting a list of names (such as
customers). Some customers may have been added to the list more than once
with slightly different names. Join the table to itself and produce a report of
all similarities greater than 90 percent but less than 100 percent.

SOUNDEX(string-expr) Returns a number representing the sound of
the string-expr. Although it is not perfect, soundex will normally return the
same number for words which sound similar and start with the same letter.
For example:

soundex('Smith') = soundex('Smythe')

The soundex function value for a string is based on the first letter and the
next three consonants other than H, Y, and W. Doubled letters are counted
as one letter. For example,

soundex ('apples')

is based on the letters A, P, L and S. Multi-byte characters are ignored by
the SOUNDEX function.

STRING(string1, [string2, .., string99]) Concatenates the strings into
one large string. NULL values are treated as empty strings ("'). Any numeric
or date parameters are automatically converted to strings before
concatenation. The STRING function can also be used to force any single
expression to be a string by supplying that expression as the only parameter.

943

String functions

944

SUBSTR(string-expr, start [, length]) Returns the substring of string-
expr starting at the given start position (origin 1). If the length is specified,
the substring is restricted to that length. Both start and length can be
negative. A negative starting position specifies a number of characters from
the end of the string instead of the beginning. A positive length specifies
that the substring ends length characters to the right of the starting position,
while a negative length specifies that the substring ends length characters to
the left of the starting position. Using appropriate combinations of negative
and positive numbers, you can easily get a substring from either the
beginning or end of the string. If string-expr is of binary data type, the
SUBSTR function behaves as BYTE_SUBSTR.

TRIM(string-expr) Returns string-expr with both leading and trailing
blanks removed.

UCASE(string-expr) Converts all characters in string-expr to
uppercase.

Chapter 40 = Watcom-SQL Functions

Date and time functions

Purpose

Date and time functions perform conversion, extraction or manipulation
operations on date and time data types and can return date and time
information.

Syntax Date and time function:
| DATE (expression)
| DATEFORMAT (datetime-expr, string-expr)
| DATENAME (datepart, date-expr)
| DATETIME (expression)
| DAY (date-expr)
| DAYNAME(date-expr)
| DAYS (date-expr)
| DAYS (date-expr, date-expr)
| DAYS (date-expr, integer-expr)
| DOW (date-expr)
I HOUR (datetime-expr)
| HOURS (datetime-expr)
I HOURS (datetime-expr, datetime-expr)
| HOURS (datetime-expr, integer-expr)
| MINUTE (datetime-expr)
| MINUTES (datetime-expr)
| MINUTES (datetime-expr, datetime-expr)
I MINUTES (datetime-expr, integer-expr)
| MONTH (date-expr)
[MONTHNAME (date-expr)
| MONTHS (date-expr)
| MONTHS (date-expr, date-expr)
I MONTHS (date-expr, integer-expr)
I NOW (*)
| QUARTER(date-expr)
| SECOND (expression)
| SECONDS (datetime-expr)
| SECONDS (datetime-expr, datetime-expr)
| SECONDS (datetime-expr, integer-expr)
| TODAY (*)
| WEEKS (date-expr)
| WEEKS (date-expr, date-expr)
| WEEKS (date-expr, integer-expr)
| YEAR (date-expr)
| YEARS (date-expr)
| YEARS (date-expr, date-expr)

945

Date and time functions

See also

Description

946

| YEARS (date-expr, integer-expr)
| YMD (integer-expr, integer-expr, integer-expr)
Aggregate functions
Numeric functions
String functions
Data type conversion functions
System functions
Miscellaneous functions

The date and time functions allow manipulation of time units. Most time
units (such as MONTH) have four functions for time manipulation,
although only two names are used (such as MONTH and MONTHS).

SQL Anywhere also supports several Transact-SQL date and time functions,
allowing an alternative way of accessing and manipulating date and time
functions. For information about the Transact-SQL date and time functions,
see "Compatibility of date and time functions" in the chapter "Using
Transact-SQL with SQL Anywhere".

Arguments to date functions should be converted to dates before being used,
so that

days ('1995-11-17', 2)
is not correct, but
days (date('1995-11-17'), 2)

is correct.

DATE(expression) Converts the expression into a date, and removes
any hours, minutes or seconds. Conversion errors may be reported.

DATEFORMAT(date-expr, string-expr) Returns a string representing
the date date-expr in the format specified by string-expr. Any allowable date
format can be used for string-expr.

For example,

DATEFORMAT ('1989-01-01', 'Mmm Dd, yyvyy')
is

'Jan 1, 1989

Chapter 40 Watcom-SQL Functions

Year 2000 compliance

It is possible in using the DATEFORMAT function to produce a string
with the year value represented by only two digits. This can cause
problems with year 2000 compliance even though no error has occurred.

& For more information on year 2000 compliance, please see "Date to
string conversions" in the chapter "SQL Anywhere Data Types".

& For more information, see the DATE_FORMAT option in "SET
OPTION statement" in the chapter "Watcom-SQL Statements".

DATENAME (datepart, date) Returns the name of the specified part
(such as the month "June") of a DATETIME value, as a character string. If
the result is numeric, such as 23 for the day, it is still returned as a character
string. For example, the following statement displays the value May.

SELECT datename(month , '1987/05/02')

DATETIME(expression) Converts the expression into a timestamp.
Conversion errors may be reported.

DAY(date-expr) Returns a number from 1 to 31 corresponding to the
day of the given date.

DAYNAME(date-expr) Returns the name of the day from the supplied
date expression. For example, with the date_order option set to the default
value of ymd:

SELECT DAYNAME ('1987/05/02"')

returns the value Saturday.

DAYS(datetime-expr) Return the number of days since an arbitrary
starting date.

DAYS(date-expr, date-expr) Returns the number of days from the first
date to the second date. The number may be negative. Hours, minutes and
seconds are ignored.

DAYS(date-expr, integer-expr) Add integer-expr days to the given
date. If the integer-expr is negative, the appropriate number of days are
subtracted from the date. Hours, minutes and seconds are ignored.

DOW(date-expr) Returns a number from 1 to 7 representing the day of
the week of the given date, with Sunday=1, Monday=2, and so on.

947

Date and time functions

948

HOUR(datetime-expr) Returns a number from O to 23 corresponding to
the hour component of the given date.

HOURS(datetime-expr) Return the number of hours since an arbitrary
starting date and time.

HOURS(datetime-expr, datetime-expr) Returns the number of whole
hours from the first date/time to the second date/time. The number may be
negative.

HOURS(datetime-expr, integer-expr) Add integer-expr hours to the
given date/time. If the integer-expr is negative, the appropriate number of
hours are subtracted from the date/time.

MINUTE(datetime-expr) Returns a number from O to 59 corresponding
to the minute component of the given date/time.

MINUTES(datetime-expr) Return the number of minutes since an
arbitrary starting date and time.

MINUTES(datetime-expr, datetime-expr) Returns the number of
whole minutes from the first date/time to the second date/time. The number
may be negative.

MINUTES(datetime-expr, integer-expr) Add integer-expr minutes to
the given date/time. If the integer-expr is negative, the appropriate number
of minutes are subtracted from the date/time.

MONTH(date-expr) Returns a number from 1 to 12 corresponding to the
month of the given date.

MONTHNAME(date-expr) Returns the name of the month from the
supplied date expression. For example, with the date_order option set to the
default value of ymd:

SELECT MONTHNAME ('1987/05/02")
returns the value May.
MONTHS(datetime-expr) Return the number of months since an

arbitrary starting date. This number is often useful for determining if two
date/time expressions are on the same month in the same year.

MONTHS (invoice_sent) = MONTHS (payment_received)

Note that comparing the MONTH function would be wrong if a payment
were made 12 months after the invoice was sent.

Chapter 40 Watcom-SQL Functions

MONTHS(date-expr, date-expr) Returns the number of whole months
from the first date to the second date. The number may be negative. Hours,
minutes and seconds are ignored.

MONTHS(date-expr, integer-expr) Add integer-expr months to the
given date. If the new date is past the end of the month (such as
MONTHS('1992-01-31', 1)) the result is set to the last day of the month. If
the integer-expr is negative, the appropriate number of months are
subtracted from the date. Hours, minutes and seconds are ignored.

NOW(*) Returns the current date and time. This is the historical syntax
for CURRENT TIMESTAMP.

QUARTER(date-expr) Returns the quarter from the supplied date
expression. For example, with the date_order option set to the default value
of ymd:

SELECT QUARTER ('1987/05/02")

returns the value 2.

SECOND(datetime-expr) Returns a number from O to 59
corresponding to the second component of the given date.

SECONDS(datetime-expr) Return the number of seconds since an
arbitrary starting date and time.

SECONDS(datetime-expr, datetime-expr) Returns the number of
whole seconds from the first date/time to the second date/time. The number
may be negative.

SECONDS(datetime-expr, integer-expr) Add integer-expr seconds to
the given date/time. If the integer-expr is negative, the appropriate number
of seconds are subtracted from the date/time.

TODAY(*) Returns today's date. This is the historical syntax for
CURRENT DATE.

WEEKS(datetime-expr) Return the number of weeks since an arbitrary
starting date. (Weeks are defined as going from Sunday to Saturday, as they
do in a North American calendar.) This number is often useful for
determining if two dates are in the same week.

WEEKS (invoice_sent) = WEEKS(payment_received)

WEEKS(date-expr, date-expr) Returns the number of whole weeks
from the first date to the second date. The number may be negative. Hours,
minutes and seconds are ignored.

949

Date and time functions

950

WEEKS(date-expr, integer-expr) Add infeger-expr weeks to the given
date. If the integer-expr is negative, the appropriate number of weeks are
subtracted from the date. Hours, minutes and seconds are ignored.

YEAR(date-expr) Returns a 4 digit number corresponding to the year of
the given date.

YEARS(date-expr) Same as the YEAR function.

YEARS(date-expr, date-expr) Returns the number of whole years from
the first date to the second date. The number may be negative. Hours,
minutes and seconds are ignored. For example, age can be calculated by

YEARS(birthdate, CURRENT DATE)

YEARS(date-expr, integer-expr) Add integer-expr years to the given
date. If the new date is past the end of the month (such as YEARS('1992-
02-29', 1)) the result is set to the last day of the month. If the integer-expr
is negative, the appropriate number of years are subtracted from the date.
Hours, minutes, and seconds are ignored.

YMD(year-num, month-num, day-num) Returns a date value
corresponding to the given year, month, and day of the month. If the month
is outside the range 1-12, the year is adjusted accordingly. Similarly, the day
is allowed to be any integer: the date is adjusted accordingly. For example,

YMD(1992, 15, 1) = 'Mar 1 1993"
ymMp(1992, 15, 1-1) = 'Feb 28 1993
YMD(1992, 3, 1-1) = 'Feb 29 1992

Chapter 40 Watcom-SQL Functions

Data type conversion functions

Purpose

Syntax

See also

Description

Data type conversion functions convert values.

Data type conversion function:
CAST (expression AS datatype)
| CONVERT (datatype, expression [, format-style])

Aggregate functions
Numeric functions
String functions

Date and time functions
System functions
Miscellaneous functions

The DATE, DATETIME, and DATEFORMAT functions which convert
expressions to dates, timestamps, or strings based on a date format are listed
in "Date and time functions" on page 945. The STRING function, which

converts expressions to a string, is discussed in "String functions" on page
941.

SQL Anywhere carries out many type conversions automatically. For
example, if a string is supplied where a numerical expression is required,
the string is automatically converted to a number. For more information on
automatic data type conversions carried out by SQL Anywhere, see "Data
type conversions" in the chapter "SQL Anywhere Data Types".

CAST(expression AS data-type) Returns the value of expression,
converted to the supplied data-type. If the length is omitted for character
string types, SQL Anywhere chooses an appropriate length. If neither
precision nor scale is specified for a DECIMAL conversion, SQL Anywhere
selects appropriate values. For example:

CAST('1992-10-31' AS DATE) --ensure string is used
--as a DATE

CAST(1 + 2 AS CHAR) --SQL Anywhere chooses
--length

CAST(Surname AS CHAR(10)) --useful for shortening
--strings

CONVERT(data-type, expression) Returns the expression converted to
data-type. The following is an example of this use of CONVERT:

SELECT CONVERT (VARCHAR(12), order_date)
FROM sales_order ;

951

Data type conversion functions

952

CONVERT(data-type, expression, format-style) For converting
strings to date or time data types and vice versa, the format-style is a style
code number describing the date format string to be used. The values of the
format-style argument have the following meanings:

(yy) | (yyyy) Output

- -0 or 100 mon dd yyyy hh:miAM (or PM)

1 101 mm/dd/yy
2 102 yy.mm.dd
3 103 dd/mm/yy
4 104 dd.mm.yy
5 105 dd-mm-yy
6 106 dd mon yy
7 107 mon dd, yy
8 108 hh:mm:ss

9 or 109 mmm dd yyyy hh:mi:ss:mmmAM (or PM)

10 110 mm-dd-yy
11 111 yy/mm/dd
12 112 yymmdd

If no format-style argument is provided, Style Code 0 is used.

Chapter 40 Watcom-SQL Functions

System functions

Purpose

Syntax

See also

Description

System functions return system information.

System function:
connection_property ({ integer-expr| string-expr}
... |, integer-expr])
| datalength (expression)
I db_id ([string-expr])
I db_name ([integer-expr])
| db_property ({ integer-expr i string-expr}
... [.{ integer-expr| string-expr}])
| next_connection ({ NULL | string-expr})
| next_database ({ NULL | string-expr})
| propenrty ({ integer-expr| string-expr})
| property_name (integer-expr)
| property_number (string-expr)
| property_description ({ integer-expr | string-expr})

Aggregate functions

Numeric functions

String functions

Date and time functions

Data type conversion functions
Miscellaneous functions

Databases currently running on a server or engine are identified by a
database name and a database id number. The db_id and db_name functions
provide information on these values.

A set of system functions provides information about properties of a
currently running database, or of a connection, on the database engine.
These system functions take the database name or ID, or the connection
name, as an optional argument to identify the database or connection for
which the property is requested.

The available properties and their uses are described following the listing of
the functions.

connection_property ({ property-id | property-name } [, connection-
id]) Returns the value of the given property as a string. The current
connection is used if the second argument is omitted.

953

System functions

954

datalength (expression) Returns the length of the expression in bytes.
The expression is usually a column name. If the expression is a string
constant, it must be enclosed in quotes. The following query displays the
longest string in the company_name column of the customer table:

SELECT MAX(DATALENGTH(company_name))

FROM customer

db_id ([database-name]) Returns the database ID number. The
supplied database_name must be a string expression; if it is a constant
expression, it must be enclosed in quotes. If no database_name is supplied,
the ID number of the current database is returned.

db_name ([database-id]) Returns the database name. The supplied
database_id must be a numeric expression. If no database_id is supplied,
the name of the current database is returned.

db_property ({ property-id | property-name } [, { database-id |
database-name }]) Returns the value of the given property as a string.
The current database is used if the second argument is omitted.

next_connection ({ NULL | connection-id }) Returns the next
connection number, or the first connection if parm is NULL.

next_database ({ NULL | database-id }) Returns the next database
number, or the first connection if parm is NULL.

property ({ property-number | property-name }) Returns the value of
the specified property as a string.

property_name (property-number) Returns the name of the property
with the supplied property-number.

property_number (property-name) Returns the number of the
property with the supplied property-name.

property_description ({ property-number | property-name })
Returns a description of the property with the supplied property-name or

property-number. The statistics and properties available are those in the
following list. The list includes the name of each property, and a brief
description. While each property does have a number as well as a name, the
number is subject to change between releases of SQL Anywhere, and should
not be used as a reliable identifier for a given property.

Chapter 40 Watcom-SQL Functions

Connection properties

Examples

Descriptions

.
L <4

The following table lists properties available for each connection.

To retrieve the value of a connection property:

¢ Use the connection_property system function: The following statement
returns the number of pages that have been read from file by the current

connection.

select connection_property ('DiskRead')

To retrieve the values of all connection properties:

¢ Use the sa_conn_properties system procedure:

call sa_eng_properties

A separate row is displayed for each connection, for each property.

Property Description

Async2Read The number of rereads. A reread occurs when a read
request for a page is received by the database 10
subsystem while an asynchronous read IO operation has
been posted to the operating system but has not
completed.

AsyncRead The number of pages that have been read asynchronously
from disk.

AsyncWrite The number of pages that have been written
asynchronously to disk.

BlockedOn If the current connection is not blocked this is zero. If it is
blocked, the connection number on which the connection
is blocked due to a locking conflict.

CacheRead The number of database pages that have been looked up
in the cache.

CacheReadIndInt The number of index internal-node pages that have been
read from the cache.

CacheReadIndLeaf | The number of index leaf pages that have been read from
the cache.

CacheReadTable The number of table pages that have been read from the
cache.

CacheWrite The number of pages in the cache that have been
modified.

Commit The number of Commit requests that have been handled.

955

System functions

956

Property Description

CommLink The communication link for the connection. This is one
of the network protocols supported by SQL Anywhere, or
is "local" for a connection without a SQL. Anywhere
Client.

CurrTaskSwitch The number of current request context switches.

Cursors The number of declared cursors that are currently being
maintained by the engine.

CursorOpen Open cursors is the number of open cursors that are
currently being maintained by the engine.

DBNumber The id number of the database.

DiskRead The number of pages that have been read from file.

DiskReadIndInt The number of index internal-node pages that have been
read from disk.

DiskReadIndLeaf The number of index leaf pages that have been read from
disk.

DiskReadTable The number of table pages that have been read from disk.

DiskSyncRead The number of pages that have been read synchronously
from disk..

DiskSyncWrite The number of pages that have been written
synchronously to disk. It is the sum of all the other "Disk
SyncWrites" counters.

DiskWaitRead The number of times the engine has waited synchronously
for the completion of a read IO operation which was
originally issued as an asynchronous read. Waitreads
often occur due to cache misses on systems that support
asynchronous 10.

DiskWaitWrite The number of times engine has waited synchronously for
the completion of a write IO operation which was
originally issued as an asynchronous write.

DiskWrite The number of modified pages that have been written to
disk.

FullCompare The number of comparisons beyond the hash value in an
index that have been performed.

HintUsed The number of page-read operations that have been
satisfied immediately from cache thanks to a earlier read
hint.

IndAdd The number of entries that have been added to indexes.

Chapter 40 Watcom-SQL Functions

Property Description

IndLookup The number of entries that have been looked up in
indexes.

Lastldle The number of ticks between requests.

LastReqTime The time at which the last request for the specified
connection started.

LockTablePages The number of pages used for the lock table.

LogFreeCommit The number of Redo Free Commits. A "Redo Free
Commit" occurs when a commit of the transaction log is
requested but the log has already been written (so the
commit was done for "free").

LogRewrite The number of pages that were previously written to the
transaction log (but were not full) that have been written
to the transaction log again (but with more data added).

LogWrite The number of pages that have been written to the
transaction log.

Name The database name.

NodeAddress The node for the client in a client/server connection.

Number The ID number of the connection.

Port An application-specific number for each client machine,
identifying the connection port.

PrepStmt The number of prepared statements that are currently
being maintained by the engine.

ProcessTime The time since the start of the connection.

ReadHint The number of read hints. A read hint is an asynchronous
read operation for a page that the database engine is likely
to need soon.

ReqType A string for the type of the last request.

Rlbk The number of Rollback requests that have been handled.

RollbackLogPages The number of pages in the rollback log

SyncWriteChkpt The number of pages that have been written
synchronously to disk for a checkpoint.

SyncWriteExtend The number of pages that have been written
synchronously to disk while extending a database file.

SyncWriteFreeCurr | The number of pages that have been written

synchronously to disk to free a page that cannot remain in
the in-memory free list.

957

System functions

Property

Description

SyncWriteFreePush

SyncWriteLog

SyncWriteRIbk

SyncWriteUnkn

TaskSwitch

TaskSwitchCheck

UncommitOp

Userid
VoluntaryBlock

WaitReadCmp

WaitReadOpt

WaitReadSys

WaitReadTemp

WaitReadUnkn

958

The number of pages that have been written
synchronously to disk to free a page that can remain in the
in-memory free list.

The number of pages that have been written
synchronously to the transaction log.

The number of pages that have been written
synchronously to the rollback log.

The number of pages that have been written
synchronously to disk for a reason not covered by other
"Disk SyncWrites" counters.

The number of times the current engine thread has been
changed.

The number of times the current engine thread has
volunteered to give up the CPU to another engine thread.

The number of uncommitted operations for the
connection.

The user ID for the connection.

The number of engine threads that have voluntarily
blocked on pending disk IO.

The number of read requests associated with a full
comparison (a comparison beyond the hash value in an
index) that must be satisfied by a synchronous read
operation.

The number of read requests posted by the optimizer that
must be satisfied by a synchronous read operation.

The number of read requests posted from the system
connection that must be satisfied by a synchronous read
operation. The system connection is a special connection
used as the context before a connection is made and for
operations performed outside of any client connection.

The number of read requests for a temporary table that
must be satisfied by a synchronous read operation.

The number of read requests from other sources that must
be satisfied by a synchronous read operation.

Chapter 40

Watcom-SQL Functions

Properties available for the engine

The following table lists properties that apply across the engine as a whole.

Examples

% To retrieve the value of an engine property:

¢ Use the property system function: The following statement returns the
number of cache pages being used to hold the main heap.

select property ('MainHeapPages')

< To retrieve the values of all engine properties:

¢ Use the sa_eng_properties system procedure:

call sa_eng_properties

Descriptions Property Description

ActiveReq The number of engine threads that are currently
handling a request.

Async2Read The number of rereads. A reread occurs when a read
request for a page is received by the database 10
subsystem while an asynchronous read IO operation has
been posted to the operating system but has not
completed.

AsyncRead The number of pages that have been read
asynchronously from disk.

AsyncWrite The number of pages that have been written
asynchronously to disk.

CacheHits The number of database page lookups satisfied by
finding the page in the cache.

CacheRead The number of database pages that have been looked up
in the cache.

CacheReadIndInt The number of index internal-node pages that have
been read from the cache.

CacheReadIndLeaf The number of index leaf pages that have been read
from the cache.

CacheReadTable The number of table pages that have been read from the
cache.

CacheWrite The number of pages in the cache that have been
modified.

Chkpt The number of checkpoints that have been performed.

959

System functions

960

Property Description

ChkptFlush The number of ranges of adjacent pages written out
during a checkpoint.

ChkptPage The number of transaction log checkpoints.

CommitFile The number of times the engine has forced a flush of
the disk cache. On NT and NetWare platforms, the disk
cache does not need to be when unbuffered (direct) IO
is used.

CompanyName The name of the company owning this software
(Sybase, Inc.).

ContReq The number of "CONTINUE" requests issued to the
engine.

CurrlO The current number of file 10s issued by the engine
which have not yet completed.

CurrRead The current number of file reads issued by the engine
which have not yet completed.

CurrWrite The current number of file writes issued by the engine
which have not yet completed.

DiskRead The number of pages that have been read from file.

DiskReadIndInt The number of index internal-node pages that have
been read from disk.

DiskReadIndLeaf The number of index leaf pages that have been read
from disk.

DiskReadTable The number of table pages that have been read from
disk.

DiskSyncRead The number of pages that have been read synchronously
from disk.

DiskSyncWrite The number of pages that have been written
synchronously to disk. It is the sum of all the other
"Disk SyncWrites" counters.

DiskWaitRead The number of times the engine has waited
synchronously for the completion of a read IO operation
which was originally issued as an asynchronous read.
Waitreads often occur due to cache misses on systems
that support asynchronous IO.

DiskWaitWrite The number of times engine has waited synchronously
for the completion of a write IO operation which was
originally issued as an asynchronous write.

DiskWrite The number of modified pages that have been written

Chapter 40 Watcom-SQL Functions

Property Description
to disk.

ExtendDBWrite The number of pages by which the database file has
been extended.

ExtendTempWrite The number of pages by which temporary files have
been extended.

FreeWriteCurr The number of pages freed of those that cannot remain
in the in-memory free list.

FreeWritePush The number of pages freed of those that can remain in
the in-memory free list.

FullCompare The number of comparisons beyond the hash value in
an index that have been performed.

HintUsed The number of page-read operations that have been
satisfied immediately from cache thanks to a earlier
read hint.

IdleCheck The number of times the engine's idle thread has
become active to do idle writes, idle checkpoints, and
SO on.

IdleChkpt The number of checkpoints completed by the engine's
idle thread. An idle checkpoint occurs whenever the
idle thread writes out the last dirty page in the cache.

IdleChkTime The number of 100'ths of a second spent checkpointing
during idle I/0O.

IdleWrite The number of disk writes that have been issued by the
engine's idle thread.

IndAdd The number of entries that have been added to indexes.

IndLookup The number of entries that have been looked up in
indexes.

LegalCopyright The Copyright string for the software.

LegalTrademarks Trademark information for the software.

LockTablePages The number of pages used to store lock information

LogFreeCommit The number of Redo Free Commits. A "Redo Free
Commit" occurs when a commit of the transaction log
is requested but the log has already been written (so the
commit was done for "free").

LogRewrite The number of pages that were previously written to

the transaction log (but were not full) that have been
written to the transaction log again (but with more data

961

System functions

962

Property Description
added).

LogWrite The number of pages that have been written to the
transaction log.

MainHeapPages The number of pages used for global engine data
structures.

MapPages The number of map pages used for accessing the lock
table, frequency table, and table layout.

MaxIO The maximum value that "Current IO" has reached.

MaxRead The maximum value that "Current Reads" has reached.

MaxWrite The maximum value that "Current Writes" has reached.

Name The name of the engine or server.

PageRelocations The number of relocatable heap pages read from the
temporary file.

PendingReq The number of new requests detected by the engine.

Platform The operating system on which the software is running.

ProcedurePages The number of relocatable heap pages used for
procedures.

ProductName The name of the software.

ProductVersion The version of the software being run.

ReadHint The number of read hints. A read hint is an
asynchronous read operation for a page that the
database engine is likely to need soon.

RelocatableHeapPages | The number of pages used for relocatable heaps
(cursors, statements, procedures, triggers, views, etc.).

Req The number of times the engine has been entered to
allow it to handle a new request or continue processing
an existing request.

RollbackLogPages The number of pages in the rollback log.

SyncWriteChkpt The number of pages that have been written
synchronously to disk for a checkpoint.

SyncWriteExtend The number of pages that have been written
synchronously to disk while extending a database file.

SyncWriteFreeCurr The number of pages that have been written

synchronously to disk to free a page that cannot remain
in the in-memory free list.

Chapter 40 Watcom-SQL Functions

Property

Description

SyncWriteFreePush

SyncWriteLog

SyncWriteRIbk

SyncWriteUnkn

TriggerPages

UnschReq

ViewPages

VoluntaryBlock

WaitReadCmp

WaitReadOpt

WaitReadSys

WaitReadTemp

WaitReadUnkn

The number of pages that have been written
synchronously to disk to free a page that can remain in
the in-memory free list.

The number of pages that have been written
synchronously to the transaction log.

The number of pages that have been written
synchronously to the rollback log.

The number of pages that have been written

-synchronously to disk for a reason not covered by other

"Disk SyncWrites" counters.
The number of relocatable heap pages used for triggers.

The number of requests that are currently queued up
waiting for an available engine thread.

The number of relocatable heap pages used for views.

The number of engine threads that have voluntarily
blocked on pending disk IO.

The number of read requests associated with a full
comparison (a comparison beyond the hash value in an
index) that must be satisfied by a synchronous read
operation.

The number of read requests posted by the optimizer
that must be satisfied by a synchronous read operation.

The number of read requests posted from the system
connection that must be satisfied by a synchronous read
operation. The system connection is a special
connection used as the context before a connection is
made and for operations performed outside of any client
connection.

The number of read requests for a temporary table that
must be satisfied by a synchronous read operation.

The number of read requests from other sources that
must be satisfied by a synchronous read operation.

Properties available for each database

The following table lists properties available for each database on the server.

963

System functions

< To retrieve the value of a database property:

Examples
¢ Use the db_property system function: The following statement returns
the page size of the current database.
select db_property ('PageSize')
+ To retrieve the values of all database properties:
¢ Use the sa_db_properties system procedure:
call sa_db_properties
Descriptions Property Description
Alias The database name.
ConnCount The number of connections to the database.
File The file name of the database root file, including path.
FileVersion The version of the database file.
LogName The file name of the transaction log, including path.
Name The database name, or alias.
PageSize The page size of the database, in bytes.

964

Chapter 40 = Watcom-SQL Functions

Miscellaneous functions

Purpose

Syntax

See also

Description

Miscellaneous functions perform operations on arithmetic, string or
date/time expressions, including the return values of other functions.

Miscellaneous function:
ARGN (integer-expr, expression| , ...])
| COALESCE (expression, expression |, ...])
| ESTIMATE (column-name [, number |, relation-string11)
| ESTIMATE_SOURCE (column-name [, number [, relation-string] |
I IFNULL (expression, expression [, expression])
I INDEX_ESTIMATE(column-name, number [, relation-string 1)
| EXPERIENCE_ESTIMATE(column-name, number [, relation-string 1)]
I ISNULL (expression, expression|, ...])
I NUMBER (*)
| PLAN (string-expr)
| TRACEBACK (*)

Aggregate functions

Numeric functions

String functions

Date and time functions

Data type conversion functions
System functions

ARGN(integer-expr, expression [, ...]) Using the value of integer-expr
as n, return the n'th argument (starting at 1) from the remaining list of
arguments.

COALESCE(expression, expression [..., expression]) Returns the
value of the first expression that is not NULL.

ESTIMATE(column-name [, number [, relation-string]]) The
relation-string must be a comparison operator enclosed in single quotes; the
default is =. If number is specified, the function returns as a REAL the
percentage estimate the query optimizer uses for the following condition:

column-name relation number

If number is not specified, the function returns the estimate used by the
query-optimizer for the following condition:

column-name relation expression

The function returns NULL if the relation-string is not valid. For example,
the following query returns the percentage estimate for employee ID
numbers being greater than 200:

965

Miscellaneous functions

966

SELECT DISTINCT ESTIMATE(emp_id, 200, '>')
FROM employee

ESTIMATE_SOURCE(column-name [, number [, relation-string]])
This function is the same as the ESTIMATE function, except that it returns
one of the strings Column, Value, or Index, where:

¢ Column means the estimate stored for the column

¢ Value means the estimate for a particular value, stored in the frequency
table

¢ Index means the estimate derived from an index on the column

EXPERIENCE_ESTIMATE(column-name [, number [, relation-string]])
This function is the same as the ESTIMATE function, except that it looks
only in the frequency table.

IFNULL(expression1, expression2 [, expression3]) If the first
expression is the NULL value, then the second expression is returned.
Otherwise, the value of the third expression is returned if it was specified. If
there was no third expression and the first expression is not NULL then the
NULL value is returned.

INDEX_ESTIMATE(column-name [, number [, relation-string]]) This
function is the same as the ESTIMATE function, except that it looks only in
an index.

ISNULL(expression, expression [... , expression]) Same as the
COALESCE function.

NUMBER(*) Generates numbers starting at 1 for each successive row in
the results of the query. Although the NUMBER(*) function is useful for
generating primary keys when using the insert from select statement (see
"INSERT statement" in the chapter "Watcom-SQL Statements"), the
AUTOINCREMENT column is a preferred mechanism for generating
sequential primary keys. For information on the AUTOINCREMENT
default, see "CREATE TABLE statement" in the chapter "Watcom-SQL
Statements".

You should not use the NUMBER(*) function anywhere but in a select-list.
If you do use NUMBER(*) rather than the preferred AUTOINCREMENT,
you should check your results carefully, as the behavior is not reliable in
several circumstances. For example, including the function in a WHERE
clause or a HAVING clause produces unpredictable results, and you should
not include NUMBER(*) in a UNION operation.

Chapter 40 Watcom-SQL Functions

In Embedded SQL, care should be exercised when seeking a cursor that
references a query containing a NUMBER(¥) function. In particular, this
function returns negative numbers when a database cursor is positioned
relative to the end of the cursor (an absolute seek with a negative offset).

PLAN(string-expr) Returns the optimization strategy of the SELECT
statement string-expr as a string.

TRACEBACK(*) Returns a string containing a traceback of the
procedures and triggers that were executing when the most recent
exception (error) occurred. This is useful for debugging procedures and
triggers. To use the traceback function, enter the following after an error
occurs while executing a procedure.

SELECT TRACEBACK (*)

967

CHAPTER 41

Watcom-SQL Statements

About this chapter This chapter presents detailed descriptions of the SQL statements available
in the Watcom-SQL language—one of two SQL dialects native to SQL
Anywhere.

This chapter contains an alphabetical listing of all Watcom-SQL statements,
including some that can only be used from Embedded SQL, and ISQL.

& For information on Transact-SQL support, see the chapters "Using
Transact-SQL with SQL Anywhere" and "Transact-SQL Procedure
Language".

Descriptions of SQL, ISQL and Embedded SQL statements, as well as the
elements that make up those statements, are included in this chapter.

969

ALLOCATE DESCRIPTOR statement

ALLOCATE DESCRIPTOR statement

Function To allocate space for a SQL descriptor area (SQLDA).
Syntax ALLOCATE DESCRIPTOR descriptor-name
... [WITH MAX { integer| hostvar}]
Usage Embedded SQL.
Permissions None.
Side effects None.
See also DEALLOCATE DESCRIPTOR statement
"The SQL descriptor area (SQLDA)" in the chapter "The Embedded SQL
Interface"
Description Allocates space for a descrip